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Chapter 1

Topological Groups

1.1 Invariant Measures

Remark.Many of the fundamental results on groups and their represenataions can be given in the
general context of topological groups, without recourse to differential theory. This is, however, a

difficult approach. Essentially the only tools available in the theory of topological groups are measure
theory and_*-algebras. This makes the landscape somewhat stark and alien. But topological group
theory provides an important application of these tools, and we will begin here.

Definition. A topological group is a group which is also a topological space, such that the group
operationz, y — zy ! is continuous.

Definition. Givena € G, define the left translation map

7, G— G

Te i g ag
As a consequence of the continuity of the group operations, left translation is a homeomorphism.

Definition. Letx,y € G, and letU be an open neighbourhood of the identity. We say thatare
U-close ifz € yU. In this way, open nbhds. of the identity take the placedfifi ¢, § arguments,
and the topological group effectively masquerades as a metric space.

Let H be a subgroup of7, and letG//H be the set of left cosetseH : = € G}. Letrw be the
canonical map

m:G— G/H.

EndowG/ H with the topology such thdd” ¢ G/H is open if and only ifr =} (1) is open inG. In
generalGG/H is not Hausdorff. However, iff is closed therz/H will be Hausdorff. The converse
is also true.

1.1. Theorem (Open Projection).r is an open mapping (maps open sets to open sets).

Proof. Let W C G/H be openV = n(x~}(W)) andz—!(WW) is open by assumption. Conversely
letV C G be open. Them~!(x(V)) = VH is open inG. Sor (V) is open. O

6



CHAPTER 1. TOPOLOGICAL GROUPS 7

Remark.Recall that a topological space is called locally compact if every point has a compact neigh-
bourhood. Further recall that a Borelalgebra is ther-algebra generated by the open sets of a topo-
logical space. Now we come to the single most important result in the theory of topological groups,
which is the existence and unigueness of a translation invariant measure.

Definition. Define a Haar functional to be a positive non-zero functiohan Cy(G), which is
left-invariant

ATef) = A), V€ Co(G).

Definition. A positive measurg@ on a locally compact space is calleeregular when the following
hold.

e If AisaBorel set, thep(A) =inf u(V), ACV.
e If K is compact, them(K) < occ.

e If Ais Borel and it is a countable union of sets of finite measuréirfite], then u(A) =
sup p(K), with K compactK C A.

Definition. Define a Haar measure on a locally compact grGup be a positiver-regular measure
on theo-algebra of Borel sets which is non-zero on any non-empty open set, and which is left-
invariant,

1(gA) = u(A), A measurable, A C G,g € G.

Remark. To prove uniqueness of Haar measure, it is useful to reduce the problem:ftorm certain
distinguished subgroup @f. The following lemma accomplishes this reduction.

1.2. Lemma (Distinguished Subgroup).Let G be a locally compact group. Then there exists a
subgroupH C G which is both open and closed, and which is a countable union of compact sets.

Proof. Let K be a compact neighbourhood bfe G with K = K~!. DefineK" = K - K--- K
n-times. These are compact nbhds. of 1, and they form an increasing sequeck™ C K"*! C
- LetH = K~ = J,., K". By construction theri is a countable union of compact sets. By
constructionH is a subgroup as well.

Letx € H, sox € K" for somen. Thereforer K ¢ K"*! ¢ H, and so a neighbourhood ofis
contained in. ThereforeH is open.

Now H is the complement of a union of all cosets which are not identically equal But all cosets
of H are open, sd{ is the complement of an open set, therefore closed. O

Remark. The distinguished subgroup that is constructed here should be thought of as “all elements
which can be reached from a neighbourhood of the identity with countably many group operations.”
Because it is constructed from a countable number of compact sets, it will have simple measure
theoretic properties. On the other hand, it is large enough that we can work on it instead of on all of
G.

1.3. Lemma. Let H be theo-finite subgroup constructed above. Uniqueness of Haar measufte on
implies uniqueness af, up to an overall constant of normalization.
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Proof. Use the local compactness@fto write G as a union of a countable number of translates of
H,

Suppose that is a Haar measure off. By the left-translation invariance of, the z; H are all
equivalent as measure spaces. Eagh is certainlyo-finite, by construction. IfA C G is an
arbitrary measurable set then we can write

A=JA, AcxzH — A()A=0 i#]

Now suppose that we have proven the uniqueness of Haar measHreTdren compute as follows.

ﬂl(U Ai) = Z pia (Ai)

= ZM(IZlAi C H)

=) cpn(; A

= C#2(U A;).
This demonstrates that the measures are unique up to an overall normalization, which is what we
wished to show. O

Remark.We will associate the measurewith the functionaldy in the usual way. That this is a
bijective correspondence is not difficult [Lan83, p.429]. It is simplest to prove the result using the
associated functionals rather than the measures.

1.4. Theorem (Haar Uniqueness)Let 1; and u, be Haar measures otr. Then there exists a
numberc > 0 such thatu(-) = cuso(+).

Proof. As shown above, it suffices to prove the result #efinite G. Therefore assume thét is
o-finite. This allows us to use the Fubini theorem freely. Let

_ ffdlh
r(f)— ffduz

for non-zero positivef € Cy(G). Lety(z) be a function supported in a neighbourhood of G,
and leth(z) = Nvy(z)y(z~1). If ¢ is chosen positive and the constanis chosen appropriately,
will satisfy

h(z) = h(z™1), /hdug =1

Let the support be chosen inside a compact neighbourthdod 1 € G. Now compute, using the
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left-invariance and the symmetry bf

[ [ gus = [ s [ g = [ [ b)) ~ ) £@)) dis ) st

= // [h(y~'z) f(y) — h(y) f(yz)] dpa (z)dps(y)
= / / (W™ y) f(y) — h(y) f(y)] dpa(z)dpa(y)

/ / x~ wy) f(zy)dps (2)dps(zy) / / f(yz)dp (z)dps(y)
— [[ 1w () - o) dus @)dpay).

Choosek small enough that, for a given> 0,
|f(zy) — flyz)| <e VreG,yeK.

Let S = supp (f), which is compact by hypothesis. Then the function~ f(zy) — f(yz) has
support in a compact set of boundegdmeasureSK ! U K—1S. By positivity of 4,

‘ [ v [ s = [ e [ g

where('; is a constant depending only gin Therefore

’/hdul—/hd %;;‘1
Therefore| [ hdu, — r(f)| < eCy, andlimg .1y | hxdp, = r(f). Thereforer(f) is independent
H f {1}
of f, and therefor@; (-) = cdus(-). O

Remark.Unfortunately, the existence proof for Haar measure is not particularly useful. It proceeds
by first constructing an approximately additive left-invariant functional for each function supported
near the identity irG. Then the set of such functions is topologized and a compactness property is
used to assert the existence of a strictly additive functional. No constructive formulae appear. See
[Lan83, p.431] for the details.

Remark.lIt is a theorem of Weil that local compactness'bis necessary as well as sufficigot the
existence of a non-zero left-invariant measure.

< eC’f/hdug = eCYy,

GCf

Remark.In all of the above constructions, “left-invariant” can be replaced with “right-invariant”.
However, the relation between the two views is not absolutely trivial.

1.5. Theorem (Modular Function). Given a locally compact grou@, there exists a group homo-
morphismA. : G — R* such that, ifu;, and ur are left- and right-invariant measures, then

o dug(zry) = Ag(x)dpr(y)
o dur(zy) = Ag(y) tdur(y)
o dur(z) = cAg(r)duy(r)
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o dup(a7) = Ag(w)dps(a)
o dup(z™') = Ag(x)'dpg(w)

Furthermore, we have the explicit formula

J e y)dpr(y)
Ag(x) = .

)= T Fy)dunty)
Proof. All are explicit computations. The only technical fact is the continuityAef, which follows

from the explicit formula. Some of the computations are as follows dugtbe a left Haar measure.
Define a second one by

d,us-j’)(x) =dur(zz), z€aG.

Clearly duf) is also a left Haar measure. By the uniqueness theorem we mustdbéz\)/e:
Aq(z) Ydur, whereAq(z) is a number depending only an Applying the definition twice gives

dpr(ryz) = Ac(y) " Ac(z) dug(z)

= Ac(yz) 'dus(x),
—  Ag(ry) = Ac(r)Ac(y).

Similarly

dpr(vyy™") = duc(z) = Aa(y) " Aa(y™) Hduc (@),

- Agly™) =Aaly) "

ThereforeAq : G — R is a group homomorphism. Note also that if we define a meakue) =
Ag(x)dug(z), then

dp(zy) = Ag(zy)dpr(zy)
= Ag(zy)Ac(y) ' dp ()
= Ac(z)dpr(r)
= dp(z)
Thereforedyu(x) is right-invariant,dug(z) = cAg(x)du(x). So the functiomAs(x) relates left-
invariant and right-invariant measures. It is an important invariant of the group O

Definition. DefineG to be unimodular wherd\;(x) = 1. Note that this implies the existence of a
two-sided-invariant measure.

Remark.We can now exhibit some Haar measures as examples. In general this is the way that we
will come about Haar measures; they are usually just guessed, and the uniqueness theorem assume
a central role.

e LetG = R considered as an additive abelian group. Then Lebesgue measure is a Haar measure.
The group is abelian, therefore it is trivially unimodular.
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e LetG = SL, (C). Represent the matrices as

Then the following measure is left- and right-invariant,

du(g) = |0|~2dBdBdydyddd).

e Let G = SL, (R). Represent the matrices as above. Then the following measure is left- and
right-invariant,
dadf dvy do
d = —.
M= (a5 — ) 7

e LetG = GL, (R). Represent the matrices as

myr s My

Mp1 - Map
Then the following measure is left- and right-invariant,

dmndmu ce dmm

dp(M) =
H(M) [det M|

e LetG = R*, the multiplicative group of positive reals. Then the following measure is left- and
right-invariant,

dp =dz/x.

e Let G = Affine (R) be the group of affine maps of the line,— ax + b, a € R*, b € R.
Consider the measure

dpn = “a,
a

where elements dff are represented gs= (a, b). Then the right-action is given by
Plaoo) : (@, b) — (a',b) = (aag, aby + b).

So the measure is right-invariant. However, the group is not unimodular. We have

da
duy = ﬁdb, Ag(a,b) = a.

1.6. Lemma (Compact Unimodularity). Let G be a compact topological group. Thé&nis uni-
modular.
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Proof. By the previous explicit formulal; : G — R* is a continuous group homomorphism.
Being a continuous map, it maps compact sets into compact sets. Therefore the irGaigaRifis
compact. Itis also a subgroup Bf. However, it is easy to see that the only compact subgroup of
R*is {1}. ThereforeA, = 1. O

Definition. We will now consider topological spaces which have degrees of symmetry described by
topological groups. These are spaces which admit actions by such a groul.desa topological
space. Define &-action onX to be a map

a:Gx X —X

such that

e (IS continuous.

d a(glgg,x) = a(gla a(927x))

e al,z) =x.

When a distinction is necessary, such a map will be called aiedttion onX. Definea to act
transitively if for allz, y € X there existg € G such thaiv(g, x) = y. Define the stability group of
re Xtobe{ge G : ag,xz)=x}.

1.2 Coset Spaces

Remark.We have already considered the cosgfd7 for closed subgroup&/. These were seen to

be Hausdorff spaces, and they were topologized such that the canonical projection was continuous.
These are clearly topological spaces which adndit-action. We will now show that these are the

only examples.

1.7. Theorem. LetG be a locally compact topological group acting transitively on a locally compact
spaceX, by . Letx € X be any point and let? be the stability group of. ThenG/H is
homeomorphic td(, by the mapping H — «(g, z).

Proof. H is closed because it is the inverse image of a closed set under the map— a(g, ),
which is continuous by assumption.

Let V C G be open, withg € V. Let U be a neighbourhood of € G which is symmetric
(U~ = U), and which is sufficiently small that/? c V.

G has a countable base, so there exists a sequgngesuch thatG = U,(g,U). Let X, =
a(g,U, x). Since the action is transitivey = U, X,,; eachX, is closed. By the Baire category
theorem, one of th&(,, must have a non-empty interior, say.

Letu € G be such that(u, z) € Xy is a guaranteed interior point. Thettu'U, z) C a(U?, z).
Soa(g, ) has an interior, which is covered by the interiof6fan so it is open. Our hypothesis was
thatl” was open. Thereforg is an open mapping. Sbis a homeomorphism. O

Remark. The above constructions can be carried out equally for right coset spaces and right-actions.
We use the notatio#/ \ G for right coset spaces.
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1.8. Theorem. There exists an invariant measyseon G/ H if and only if Ag(h) = Ay (h) for all
h € H. This measure satisfies

| 1@~ [ | dutat) { /| f(hg)dh].
Proof. See [BR77, p.130][Lo060]. O

Remark.In a precise sense, topological groups which look the same locally are all derived from a
universal group which has a simple global structure.

1.9. Theorem (Universal Covering).Let G; be arcwise-connected, locally connected, and locally
simply-connected. Then there exists a unique simply-connected Grawith a discretenormal
subgroup/V; such thatG; ~ G/Nl. Furthermore, ifGG, is another such group, which is locally
isomorphic toG;, then there is another discrete normal subgravipsuch thatt, ~ G/ N, for the
sameG'.

Proof. Most of the statements are true in the general context of covering spaces. Uniqueness of the
universal covering is simple because no simply-connected space has a proper covering and any two
coverings have a common covering. See, for example [Ger85]. The specific group-theoretical results
are more difficult. See [Pon66]. O

Definition. The groupG is called the universal covering group@f, G-.



Chapter 2

Extensions and Group Cohomology

Definition. Let GGy be a normal subgroup @f. Then we have the following exact sequence
15 Gy >G5 G/Gy— 1.

Let G; = G/Gy. Then we say that this situation gives an extensio&'pby G,. Given two groups
Gy, G, itis interesting to ask when such extensions exist.

Definition. The simplest type of extension is the semi-direct product. Since this is a familiar con-
struction it is a good place to start. L@, G; be groups. Let) : G; — Aut (Gy) be a represen-
tation of G; on Aut (Gy). LetG = G, x Gy be the Cartesian product 6f, andG;. We define a
group operation ol by

(91,90) - (91:90) = (9191, [V (91)90]90)-
Associativity is the only hard part. It is a five or six line computation. Clearly the injections
ig: Gp — G
io : go — (1, 90)

11: G — G
ir: 91— (1,01)

are group homomorphisms. So we have an extension. This extension is called the semi-direct product
of Gy by G; with v; we write

G:GO ><1¢G1.

Remark.Examples of semi-direct products are easy to come by. The simplest example is probably
the affine motions of the line, a group we have seen before,

Affine (R) = R x R*
(a,b) =x — ax +b
(a,b)(a’, V) = (ad’,ab’ +b).

14
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Remark. The following lemma shows how more general extensions can be constructed.
2.1. Lemma (General Extensions)Let two maps be given,
X : G1 X G — Gy,
Y Gy — Aut (Gy)
and require that they satisfy the conditions

o Y(91)¥(91) = ¥(g9191)p(x (91, 91))

-1

o x(9191,97)v(97) ™" = x(g91,9197)x (91, 97),

werep : Go — Aut (Gy) is the representation @, on itself by conjugation, sp(Gy) = Inn (Gy),
the inner automorphisms ¢f,. When such maps exist satisfying these properties we have an exten-
sion of G; by Gy. Note that in generad : G; — Aut (Gy) is not required to be a representation.

Proof. The conditions for an extension can be verified from the conditions on the given maps.

Definition. Whenvy : G; — Aut (Gy) is a homomorphism, we say that the situation describes
a central extension. In this cagéy(g1,91)) = 1, thereforex(g1,97) " 90x(g1,9;) = go for all
g1, 91, g0- Thereforex(G; x G1) C Z (G,), the center of.

Remark.In general there may exist no such maps), and then no extensions 6f; by G, will
exist. When extensions exist they may not be unique.

Definition. Let G act on an abelian group. Define a map: to be ann-dimensional cochain if
c:Gx---xG— A

C: (907"'7971) — c(g[))"'vgn)
(990 ---,99n) = 9¢(Gos - - -+ Gn)-

Definition. Define a coboundary operator by

n+1

de(goy - -y Gnr1) = Z(—l)ic(gg, s Gy e ey Gntl)-
i=0

Definition. A cochainc is called a coboundary if = db. It is called a cocycle iflc = 0.

2.2. Lemma. The set ofi-dimensional cochains forms a grodfi’ (G, A). The set ofi-dimensional
cocycles forms a group” (G, A), containing the:-dimensional coboundaries as a subgroli(G, A) <
Z"G,A).

Definition. Define then-dimensional cohomology group to be the factor group
H" (G, A) =Z"(G,A)/B"(G, A).

When A has the extra structure of a ring or algebra, thEN G, A) is a also a (graded) ring or
algebra.
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Remark.Rather than deal with(gy, . . . , g,,) explicitly, it is easier to compute with the representation
(g1, 9n) = (1,91, 9192, - - -, 9192 - - - gn). TheEN
de(h) = hé — ¢

dC(h17 hg) = hlé(hg) — 5(h1h2) + E(hl),
dNC(hl, hg, hg) = h16<h2, hg) — E(hth, hg) + 6(}11, thg) — é(hl, hg)

Remark.Now return to the discussion of general extensions. Given two groups, it is natural to ask
when extensions of one by the other exist and to classify the extensions when they exist. In general
there are obstructions to the existence of extensions. The following theorem characterizes those
obstructions and the extensions.

2.3. Theorem. If H? (G, Z (Gy)) = 0, then there exist extensions®@f by G. Equivalence classes
of central extensions @f, by G, are in one-to-one correspondence with element&df7,, Z (Gy)).

Proof. Consider the mag. The first required property states that

V(1) ((91) = ¥(g191) - p(x (91, 91))-

Thereforey(g1)v(g}) and(g1¢;) differ by an element ofmp = Inn(G,). So they define the
same element of the factor spatet (Gy)/Inn (Gy). The conjugation map : Gy — Gy is an
isomorphismG, /ker p ~ Inn (G,). The kernel is just the center@§, solnn (Gy) ~ Go/Z (Gy).
Thereforey (g1, g;) is defined as an element 6%,/ Z (G)), i.e. defined up to an element 8f(G,).

In general the second required property can fail to hold. However, the two sides can differ by at most
an element of£ (G,), call itw(g1, 9}, 9)) € Z(Go). This can be seen by applyingto both sides.
Sowisamapw : G; x G; X G1 — Z (Gy).

Furthermore, we have freedom in changinas long as we do not disturb the second property.
Multiply that property by somé : G; x G; — Z (G)), and this altersy by a factor

B(g191,97)8(91. 6,)B(g1, 97) " B(g1. g 97) "

Finally, the mapv must satisfy

w(g1, 92, 93)7100(917 92, 9394)w (31, G293, 94)71 = w(9g2, 93, 91)w (9192, 93, g4) "

These statements are more transparent in the additive notation. Trivial changaeigiven by
w — w+ B(g192, 93) + B(g1, 92) — B(g2, 93) — B(91, 9293),

and the constraint an is

—w(g1, 92, 93) + w(91, 92, 9394) — w(91, G293, g1) — w(92, g3, 94) + w(9192, g3, 94) = O.

This meansiw = 0, wherew : G; x G; x G; — Z ((G)) is regarded as a 3-cochain, i.e. as a
representation of a 3-cochain in the form of a function of one less argument {). The trivial
changes i are given byw — w + dg.

Therefore, nontrivial obstructions to the second property are elemelts6f;, Z (Gy)). Nontrivial
changes of extension are element$iéf G, Z (Gy)). O



Chapter 3

Representations of Topological Groups

3.1 Introduction

Definition. Let G be a locally compact separable topological group. Hebe a separable Hilbert
space, and let be a homomorphism af into the set of bounded linear operators’rwhich is
continuous for the strong operator topology.

p:G— B(H)
p(zy) = p(z)p(y).
Thenp is called a representation 6fon H.
Definition. A unitary representation @ is a representation into the set of unitary operatora{on

Definition. LetH = L?(G; u). The left regular representation is defined by

(paf)(g) = fla"'g), feH.

By invariance ofi, eachp, is isometric and has domain equalio So this representation is unitary.
Strong continuity is easily proven by approximatifigc H by Cy(G) functions.

Definition. Let p andp’ be representations ¢f in H and’’. Define an intertwining operator to be
a bounded linear mapg : H — H' such that

Vo =pV, VgeG.

Denote the set of intertwining operators farp’ by Homg (p, p'). GenericallyHomg (p, p') is a
linear space. Whep = p' thenHomg; (p, p) is an algebra.

Definition. Two representations are unitarily equivalent when there exists a unitary intertwiner for
them. They are simply equivalent when an intertwiner of any type exists.

3.1. Theorem (Unitary Intertwiners). Let p, p’ be unitary representations which are equivalen-
t.Then they are unitarily equivalent.

17
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Proof. By assumption there exists : H — H’ such that
Vg =p,V
— VTp; = p V1
= VVip =Vp, V1 =pVVT.

So eaclp, commutes with/ V1. Let A = V'V VT, sop, commutes withA. Thereforep, commutes
with A=V, But A=V is unitary. O

Definition. The intertwining number ob, o’ is
c(p, p') = dim Homg (p, p').

3.2. Theorem (Continuity of Unitary Representations). Let p be a unitary representation @f on
H. Then T.FA.E.

1. pis strongly continuous.
2. pis weakly continuous.
3. g — (pyu, u) is continuous at the identity for all € H.
Proof. 1=—-2—-3 follows from the definitions. We will prove=3=-1. Letu € H, x,y € G.Then
[Pzt — pyull = 2 (u,u) — 2Re (pyu, pzu)

< 2[(u, u) = (pyu, pru) |
< 2| (u, u) = (pr-1yu, u) |

The implication follows from this inequality. O

Definition. A representation is called (topologically) irreducible if it has no proper closed invariant
subspaces.

Remark. For unitary representations there exists a notion of orthogonal complement for an invariant
subspace. This allows a straightforward decomposition of representations.

3.3. Theorem (Orthogonal Complements).Let p be a unitary representation @ on H. Let’H;
be a subspace ¢f with associated projectiof’. Then

1. H, is invariant if and only itPp, = p,P, g € G.
2. Hi is invariant if and only ifH, is invariant.
Proof. This is a simple exercise. O

Definition. A representatiorp of G on H is called completely reducible if it is a direct sum of
irreducible subrepresentations,

H= @iHia -Png = Png
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Remark.Here is a catch-all counter-example. l(et= R. Let H = R2. Let p be a representation in
terms of upper-triangular matrices
(1 =z
Pr=N0 1)

Clearly’H; = {(u,0) € R?} is invariant. However, the complemeht- is not invariant. This shows
that unitarity is necessary for the theorem on orthogonal complements.

Note further thaf{, is a proper closed invariant subspace. Howevisr not completely reducible.
The following theorem shows that unitarity cures this sickness as well, at least in the finite-dimensional
case.

3.4. Theorem (Finite Unitary Reducibility). Letp be a finite-dimensional unitary representation.
Thenp is completely reducible.

Proof. Split out the invariant subspaces and their orthogonal complements. Proceed by induction.
The induction terminates becauless finite-dimensional. O

Remark. The generic infinite-dimensional case requires the direct integral. Given this machinery, an
appropriately similar result holds. This is the Gelfand-Raikov theorem. See 3.4.

3.5. Theorem (Schur A). Let p, o/ be unitary irreducible representations 6f on H, H'. Suppose
V : ' H — H'is a bounded linear transformation such that

Vipg = /)/gva geq.
Then eithetH = H' or V = 0.

Proof. As in the proof of the unitary intertwiner propositiol,’VV commutes withp. Let A =
[ AdE(X) be a spectral representation fdr = VV. ThenpE(\) = E(\)p. Therefore every
closed subspackK, = E(A\)H is invariant. Butp is irreducible by hypothesis, therefore, = H or
H, = {0}. Therefored = \1. Similarly VVT = M1 and\V = NV, so either\ = X andV # 0, or
V = 0. SettingU = \~'/2V for the casd’ # 0, we havel/TU = UUT = 1. ThereforeH = H’ by
U. O

3.6. Theorem (Schur B). Let p be a unitary representation ¢f on . Thenp is irreducible if and
only if

Vps=pV,g€G <=V = AL

Proof. Suppose that all operators commuting witlare multiples of 1. Then if? is a projection
operator commuting with, P = A1, and therRan(P) = {0}. Therefore the only possible invariant
subspaces ar¥, {0}; thereforep is irreducible.

Conversely ifp is irreducible and” is some operator commuting wigh then the self-adjoint oper-
atorsV, = 1/2(V + V1), V_ = 1/2(V — VT) commute withp. But V. must then be multiples of 1
by the proof of [Schur A]. Therefor® is a multiple of 1. O

Remark.In the finite-dimensional case we can make due without the assumption of unitarity, as
shown by the following theorem.
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3.7. Theorem. Let p be an irreducible representation 6¢f on H, dim’H < oco. ThenVp = pV
=V =L

Proof. Supposé/p = pV. Let N = ker (V). Then{0} = Vp - ker (V). Thereforepker (V) C
ker (V), andker (V') is invariant. By assumptioker (V') = H or {0}. Suppose then th&tr (V') =
{0}, otherwiseV = 0. Let \ be an eigenvalue df. Thenl — A1 commutes withp by explicit
computation and so it must too haker (()V — A1) = H or {0}. But it cannot be{0} because
V' — Al cannot have an inverse. Therefdee (V' — A1) = H, andV = Al. O

Definition. A representatiop of G is called a factor representation when the centét@fi; (p, p)
consists purely of multiples of the identitg, (Homg (p, p)) = {A1}.

Definition. A representation is called primary if it cannot be represented as a sum of disjoint repre-
sentationsp # p; @ p2. Such a representation might have a proper invariant subspace, but it may be
impossible to split the space.

Definition. A factor representation is callébype I if it contains an irreducible subrepresentation.
A group is calledType I when all its factor representations &repe 1.

Remark.We note the following important facts. See [Mac89, p. 61].

e (G compact=-G is Type I.

G locally compact and abelian=-G is Type I.

G is semi-simple Lie=-G is Type I.

Let G be a countably infinite discrete group. Th@ns Type I if and only there exist&V C G,
N abelian and normal, witty' /N finite.

G connected and nilpotert=-G is Type 1.

e There exist connected Lie groups which are Tigpe 1.

Remark.Let F' be the free group on two generators. Then the regular representationsafiot

Type I, and soF is notType I. Note thatF is the fundamental group of the plaf#é with two
punctures. This illustrates that it is possible to get in trouble very quickly. The representation theory
of F'is quite difficult.

3.2 Locally Compact Abelian Groups

3.8. Theorem (One-Dimensionality).Let p be an irreducible unitary representation of a locally
compact abelian group. Thenis one-dimensional.

Proof. p,p, = pyp.. By [Schur B] thenp, = c(z)1, wherec(z) is a number depending an
Therefore anyH; C H with dim H; = 1 is invariant. Butp is irreducible salim ’H = 1. O
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Definition. A charactery of GG is a one-dimensional continuous unitary representatia@, of

x:G— C,
Ix(9)l =1,
x(91)x(g2) = x(9192)-

Let G denote the set of all characters@f CIearIy@ is an abelian group.

Remark.Examples:
e G=R"—G =R".
e G=U(1) =G =2

Notice the resultz = G, for these cases. This is a general result called Pontryagin duality.

3.9. Theorem (Stone-Naimark-Ambrose-Godement)Let p be a continuous unitary representa-
tion of a locally compact abeliat¥ onH. LetG be the character group ak. Then there exists a
projection-valued measuré~(z) on GG such that

p(x) :/A/x\(x) dE(Z).

G

Proof. The functionz — (p,u,u), u € H, is positive definite. Therefore there is a finite Borel
measureu, ,, on G such that

%MMZ[ﬂ@@wﬁ,

G

by Bochner’s theorem. Use polar decomposition to wite:, v) in terms of(p,u’, u’) for someu’.
So there is a uniqgue complex measprg on G with

m%w:éﬂmww@.

Now dy., , is a bounded linear functional. Therefore by the Riesz lemma, for any Borél sel?
there is an operata®(B) on’H with (E(E)u, v) — tuo(B). This operator-valued measure gives a
spectral measure, as can be checked. So

(pru,v) = / Z(z) (dE(Z)u,v).

a
U

Remark. The preceding theorem completely characterizes the unitary representations of locally com-
pact abelian groups. However, we can give some more details. In the next section we will prove the
Peter-Weyl theorem. As a corollary we will see thatsiis compact therd- is countable. Now, the
projection-valued measures on such a space are simple; each one is an assignment of a projection op
erator to each point of the discrete space. Therefore, up to equivalence, a representation is specifiec
by giving the dimension of the range of each projectignz € G.
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Remark.In the noncompact case the measuregoare more diverse. Let be a measure o@.
Define a representation 6f on L? (@; u) given by

p"(9)f () = z(9) f(2).
The projection-valued measure associated 't
P', PLf(@)=1p-f(@) EcCG.
Such projection-valued measures are equivalent if and only if their underlying measures are in the
same measure class [i.e have the same sets of measurefZere],P”? <— v; = 5. A complete

set of invariants for a unitary representation of a locally compact abéliara sequence of mutually
singular measure classesGh

Coo, C1,C, ...
See [Mac89].

3.3 Compact Groups

3.10. Theorem (Unitarization). Let p be a representation of a compact groGpon H. Then there
exists an equivalent inner-product @tsuch thatp is unitary with respect to this inner product.

Proof. Define the new inner product by

(u,v)'—/Gdg (Pgti, pyv) -

Because of the averaging procedure it is clear that is preserved by. Sop, are isometries with
domain equal to the whole Hilbert space, and therefore they are unitary. Now

lull? < sup [|p(a)] / dg (u,u) < C'|Ju]?,
zeG G

and

lull* < sup ¢' lp(x)ul* < C" [|ul).
xe

So||-|| and||-|| are equivalent. O

Remark. This shows that if the grou@ is compact, then it is sufficient to consider unitary represen-
tations because any given representation can be unitarized by an averaging procedure.

3.11. Theorem (Peter-Weyl).Let p be a unitary irreducible representation of a compact grakip
on a Hilbert spacég{. Thendim ‘H < oco. Furthermore

(&1,&) (771,772).

/Gdg (&1, 2(9)m) (&2, p(g)2) = dim H

Finally, if p; # p, are irreducible representations then

/Gdg (&1, p1(g)m) (&2, pa(g)m2) = 0.
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Proof. The map&, — [, (&, p(g9)n 1) (&, p(g)ne) is clearly a bounded linear functional 6. By
the Riesz lemma it is equal 1§ — (&, () for some( € H, which depends continuously @p.

Therefore there exists an operatbwith ( = A&; A depends omy, 172. Now (&1, () = (&1, A&s), SO
we compute

(p(9)&1, ALs) = /G dg" (p(9)&1, p(g")m) (&2, p(g")n2)

_ /G 96, p(6m) @) (g an p(g)12)
(
e

(
p())(( &2, p(g")n2)
&) -

) ThereforeA € Homg (p, p). But sincep is irreducible, by

dg" (p(
dg” (&,

S0 (&1, p(971)AL) = (&1, Ap(g™
Schur’s lemmad = \1.

A similar argument for,, 7, then shows that

/G(&,P(g)?h) (&2, p(9)m2) = C (&1,82) (1, 1m2) -

Now if 61 = 52 =M =" then
1
— 1 [ dgl (€ PO
1§11° Ja
So clearlyC' > 0.

Let {e;} be a collection of: orthonormal vectors ift{. Then

ZI & p(g)e)) [* < l€]”

i*Z/dm Eplg)es) P < €I, /Gdgzl

— ZO||§||2 < |lg)?
=1

1
= (C < —.
n

If H were infinite-dimensional then taking — oo would giveC' = 0. But C' > 0. Therefore
dimH < oo.

Now let{e;} be a basis fot{. Then the computation gives equalify,= 1/n.

Finally consider the case of two representations which are inequivalent. Sincé € Homg (p, o),
A = 0. ThereforeC' = 0. O

Definition. Every group admits the so-called regular representations carriéd {@y; 1.). We have
already seen the left regular representation. Define the right regular representation by

P9 f(d) = f(dg), [feLl’(G;n).
In generalp® is highly reducible.
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3.12. Theorem (Right Regular Completeness)Each irreducible unitary representatigrof a com-
pact groupG is equivalent to a subrepresentation of the right regular representation,

Proof. Let D,;(g) be the matrix elements of the given representatioBonsider the set of functions
fr = /dim pDyy, in L% (G; ). The span of f;.} in L? (G; 1) gives a subrepresentation dgf,

p"™(90)fr(9) = D1x(9g0)+/dim p
= D1;(9)Dji(g0)+/dim p
= Djr(90) fi(9)-

This representation is clearly equivalentito O

Definition. Let p be a finite-dimensional representation. The character isfthe function onz
given byx,(g) = Tr (p(g)) -

Remark.Characters have the obvious properties, stated in the following lemma. These properties
make characters homomorphisms from the representation ring into the ring of functiGhsloich
are constant on conjugacy classes.

3.13. Lemma.
Xp1@pz = Xp1 T Xpo
Xp1®p2 = Xp1 Xp2-

3.14. Theorem (Schur Criterion). Let p be an irreducible unitary representation of a compact
groupG. Then one and only one of the following holds.

LoX, # % JoXo(9P)dg=0, pZp.
2. Xp=Xp  Juxp(9P)dg=+1, p=p, pisreal.
3. % =Xp Joxo(g®)dg=—1, p=p, pisnotreal.
Proof. Let H be the representation space folLet Hs = H ®s H, Ha = H A 'H, andpg, p4 acting

respectively. Now

Tr (ps(9)) = Z % (e; ®@ej+e;@e;,ps(g)(ei@e; +e;®e;))
= Z (i, p(9)es) (e5, p(g)e;) + (e5. p(g)e:) (€5, p(g)e;) |

and

Tr (palg)) = > (es, plg)e:) (es, plg)es) — (e, p(g)es) (ei, plg)e;) -

1<j
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Therefore

Tr (ps( )) TI‘ pA —22 €, P 6]: 6] +22 €, P emp(g)ej)

— 222’ <j ej, p(g)ei) (i, p(g)e;)
= Z €, P z
= Tr ( ( )2) .

S0x,(9%) = Xps(9) — Xp.(9)- Now it is a simple fact thaf,, x,,(g)dg is equal to the multiplicity of
the identity representation jm Therefore

/ o)y = / o (9) = Xon(9))dg
G G
= dim Fixg (Hg) — dim Fixg (Ha).

Consider the action off on’H ® H. SinceH ® H = Homg (H,H), and sincep is irreducible,
Schur’s lemma implies

dim Fixg (H ® H) =0 or 1.
SinceH®H=H®sH+H®aH,
dim Fix¢ (Hg) + dim Fixg (H4) = 0 or 1.
Therefore either

dim Fixg (Hs) = 1 anddim Fixg (H4) =0
ordim Fixg (Hs) = 0 anddim Fixg (H ) =1
ordim Fixg (Hg) = dim Fixg (Ha) =
Supposep is equivalent to a real representation. Therefore it is orthogonal. Thergipee ® e;
is invariant inHg, and we have case 2. Conversely supposeihatontains an invariant element.

This element can be diagonalized o¢&to a multiple of the identity, sp(G) C O (n). In this case
we have the contrapositive of 3. This completes the classification. O

Definition. Let G denote the set of irreducible unitary non-equivalent representatiars of
3.15. Theorem (Peter-Weyl 11). The set of function{ij(g) = (&, p(9)&;) : p€ @} is complete
in L? (G; dg).

Proof. Let £ be the completion of the span %fDZ (9) : p€ @}. ConsiderZ*. If we could show

that £+ contained a non-trivial finite-dimensional right-invariant subspace, then we could consider
the right regular representation restricted to that subspace

p™(9)¥e(90) = ¥i(909)
= D} (9)1;(g0), somes’ € G.
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But thenyy(g) = D,@'j(g)%(e), so thaty € L. Buty € L£*; thereforey = 0, but then the right-
invariant subspace was actually trivial. So, suppogings non-trivial, let us construct a non-trivial
right-invariant subspace.

Pick a continuous symmetric functionz) in £+, and define an operatat*,
(A0)(@) = [ wlay o) dy

Recall that symmetric means(z) = w(z~!). A' is self-adjoint and compact. Furthermore,
Ran(A*) C £+, as the following computation shows.

/G (A0 @) Do = [ [ dedywtay o) D)
_ / / da’ dyw(z'Y(y) Dy (a'y)
_ // da’ dyw (2" )0 (y) D, («') Dy, (y)

_ / dv'w(z')Ds (') / dyy(y) Dy, (y)
—0.

The final equality holds since the first term vanishes, sinee £*.

So A+ projects ontol+. Therefore any eigenfunction of* is in £+. SinceA* is compact it has
eigenspaces of finite multiplicity. Furthermore,

[ wley s = [ wee i)
so Atpft = pft AL, Therefore any eigenspacesaf will be invariant undep”. As per the previous
comments,this completes the proof. ]
Definition. Givens € G andj € {1,...,dim s}, define the set ofim s functions

Yi(g) = VdimsDj(g), k=1,...,dims.

Also define

ffé)k(g) = VdimsDi;(g), k=1,...,dims.

L:at 7@.) be the closure of the span {)Y(j.)k} and similarInyj); Hi andHfj) carry representations
Py Py
3.16. Theorem (Regular Reduction).

pft = @dims o’

se@G

ot = @dims P

seG
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Proof. ConsiderH¢;. The ﬂfj) are analogous. Firsti{(;) L H,) for (s,j) # (s'.J), so the
decomposition is unique, in the form

R s
p= 69s€Gj€{1 ..... dlmsH(j)'

But p(;) (2)Y{5),(%0) = Dy (20)Y(j),(2); thereforepf,) = pf;,\. Therefore
Dj=1,.. dims H{j) = dim s - HE;) = dim sH".
U

Definition. Let p,s € G. Define the following operators which act on the spatearrying the
representatiop.

P, = dims/Gmp(g) dg
3.17. Lemma. We have the following properties.
1. (Pt =Pz,
2. PP = 6% 04y Py
3. p(9) Py = D7 (9)Fry-
4. Fyp(g) = Dy, (9) ;.-
Proof. These are simple calculations. O

Remark.Consider the examplé = SO (3). g = (¢,0,v¢), ¢ € [0,27), 0 € [0,7), ¥ € [0,27).
[Euler angles].

p(g) = exp(—i¢pJ,) exp(—ifJ,) exp(—iyJ,)
sin edgbd@dw

dg =

Dl (g) = (1 “OSH) PO (cos 9) expl—im(é + )

2J +1
-~ 8m2

P! = /D (6,0,) p(¢,0,)sin 0 dp db dip.

Remark. Suppose we have a factor representation. For contp@awill be of the formn,p,, where
n is the multiplicity. LetP; = P, , which is a projection operator. Léis = PSH WhereH is the s-

pace for the factor representatldm p*®p @ -®p*. The sef{ (s;p| = L p= ., dim s}
for ¢ fixed andu € H fixed, transforms as a set of basis vectors in an |rredu0|ble representatlon e-

quivalent tos,

p*(9) (s;pl = D;,Pru= D}, (s;r].

TP Tq

So if we are given a factor representation in a particular form, then we can find the irreducible
subspaces by the following procedure.
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1. FindH; = P;’H, q arbitrary but fixed.
2. Choose an orthonormal basisif, {u;}.

3. For eachy;, an irreducible subspace is given bys; p| = Psu; : p=1,...,dims}. In this
way we find up talim s irreducible subspaces for the representation

Remark.Let sq, sy € CA}, acting on spaceX,, H,. Pick a basis for each space,

{(sip|} CHy, pr=1,...,dims,
{<82p2’}CH27 P2 = 1,--.,dim82.

Consider the decomposition of the tensor product,
51 ® 83 = D, ansS.

Suppose that, = 0orl in the above. Then we can label the basis elementg{foas {(sp|},
p=1,...,dims. A basis forH** ® H* is given by
{(s1p1| ® (sap2| p1=1,...,dims; po=1,...,dimsy}.
Apply the operatorg’;, to write the basis vectors @{* in terms of those fo#{** @ H*2,
(sp| = NPqu (s1p1] ® (s2p))]

p=1,...,dims

q, p, P fixed but arbitrary.

N = normalization constant

Explicitly we have

(sp| =

dins [ i (@inlo) (undl sars]

p'piph
and
Ny 'phphy = |5p,> (<31p,1| ® <82p,2|) .

It is a simple calculation to show that

(s1m) @ [s2p2)) {591 = 5 —dims | D, (6D}, ()3, o) .

P’ p1p2

In particular

1/2
= | [ Do @i, 0005, s

In the case that the multiplicities in ® s, are greater than 1, we will have sets of basis vectors,
one for each of the, in steps 2 and 3 of the procedure given in the above remark. So we would have
(sp|, and independent coupling coefficienﬂz%f,p,lpé.
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3.4 Infinite-Dimensional Representations

Remark.When the group is no longer compact, infinite-dimensional representations are indispens-
able. It turns out that we must generalize the concept of direct sum to a direct integral of spaces
in order to properly describe the decomposition of representations. Furthermore, the concept of
character must be generalized, and this will require some generalized function theory.

Definition. Let (X, ) be a Borel measure space. Létindex a set of Hilbert spacg$+4, }. Define
apu-measurable field of Hilbert spaces to{&1.. }.cx, ') where

1. T'is a subspace df[ , H,.

2. Foreveryy € I, x = ||yz||,,, is measurable.

3. Leto € [[H.. If 2 — (o(x),v(x)) is measurable for al} € I, theno € T".
4

. There existsy, 72, - - - € ' such that, for every € X, the closure of the sdty,(x)} is equal
to'H,.

Definition. When the above hold, elementsiofire then callegi-measurable vector fields. Define
~ € I" to be square-integrable if

[ Ir@l, dnte) < o

Definition. The Hilbert space of square-integrabl@s given above, is called the direct integral of

‘H.., denoted
&3]
/ H, du(z).

Definition. Let {A,} be a family of operators on the spadés, }. Suppose that the function—
| Azl is bounded almost everywhere. Then the vector fiele> A,v(x), for everyy € T, is

measurable. The s¢#, } then represents a bounded operatod@rﬂm du(z), which is denoted

A= /@ A, dp(z).

Such an operator is called decomposable.

Remark.There are some interesting algebraic structures associated to locally compact groups. At
this point some operator-algebra theory is useful.

Definition. Let M'(G) be the algebra (under convolution) of bounded complex measurés on
Defineu* by du*(g) = du(g=1). Then||u*|| = ||p||, andM*(G) is an involutive Banach algebra.

Definition. If p is a unitary representation 6f andu € M'(G), let

p(p) = /G p(g) du(g).

We could call this the Fourier transform of the measued the pointp, /i(p). However, we will not
need this terminology in the following.
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3.18. Lemma. i — p(u) is a representation of the involutive algehta' (G) onH,.

Proof. This is a simple computation. O

Remark. L' (G; dg) is embedded in/!(G) in an obvious way, and the above procedure provides a
representation of! (G; dg) as well.

Definition. Complete the algebra' (G dg) in the norm|| f||, = sup,, ||p(f)|, where the supremum
is over all *-representations of the algelira(G; dg). The resulting algebra is called th&-algebra
of G, C*(G).

Definition. A *-representation is called non-degenerate if the closure of the set

{p(a)¢ : a € L' (G;dg), & € H}
is equal toH.

3.19. Theorem. A representatiom of the algebral! (G; dg), or of C*(G), is generated by a unitary
representation of- if and only ifp is non-degenerate. In that case, the representation of the group is
uniquely determined.

Proof. See [Kir76, p. 144] and [Dix69, 13.3.1+13.3.4]. OJ

3.20. Theorem (Gelfand-Raikov).Every unitary representatiop of a locally compact grouy-
can be decomposed into a direct integral of irreducible representations.

Proof. See [Kir76, p. 146]. O
Remark.We have the following special case which is some interest in its own right. [GGPS69, p.
23].

3.21. Theorem (Compact Operator Gelfand-Raikov).Let (p, H) be a unitary representation of a
locally compact grougs. Suppose that for alf € Cg° (G) p(f) is a compact operator. TheH
splits as a discrete sum of irreducible unitary representations of finite multiplicity,

Proof. First consider the set of € C§° (G) which are symmetricf(g) = f(¢g~'). For suchf,
p(f) is self-adjoint. By assumption it is compact, so it has a countable discrete spectrum of finite
multiplicity, except possibly for the spectral point zero. Therefore we have the spectral representation

H =@ H(f.k), dimH < oofork 0.
k=0

HereH' is any invariant subspace (includiftgitself). Let

H> = U H(f, k).

fECS(G), f symmetric k0
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Suppose thak{> is a proper subspace &f. Then we have # 0 in H — H*> with p(f)v = 0 for all
f. But this is not possible, by a simple calculation with approximate identitie${Se= H.

So every invariant subspace &f has a nonempty intersection with som& f, k), £ # 0, and

no H(f, k) is left out. Pick some&H(f, k), k # 0. We know that there are invariant subspaces
intersecting this subspace. Take the minimal nonempty invariant subspace from thes@&{ calf it

it were reducible then each of its components would intersect the c@ggrk), but this would
contradict its minimality. Thereforg(; is irreducible.

Continue this procedure inductively, thus obtaining
H= @Hk, ‘H,. = invariant irreducible

Suppose that there was &), which was not of finite multiplicity in the above. Pick soméf)
having an eigenvector iH;, with eigenvalue\ # 0. By assumption this eigenvalue would be repeated
infinitely many times in the spectral decompositiornpof) on H, which is not possible. Therefore
eachH,, is of finite multiplicity. O

Definition. A unitary representatiopis called completely continuous if for afl € L' (G; dg) p(f)
exists and is a compact operator. Some conditions for complete continuity are

e (G semisimple Lie=-all irreducible unitary representations are CCR.

e (G connected nilpotent Lie=-ditto.

I think that this is different from the following concept, but | am not sure.

Definition. Recall the notion ofl'ype I representations. A locally compact group is called tame or
Type I if all its irreducible unitary representations argpe /. See p. 20.

Definition. Suppose that, given a representaiiosf G, we can find a subalgebi®,(G) ¢ M'(G)
satisfying

1. D,(G) is invariant under right and left translations.

2. p generates a representatjpof D,(G) and can be reconstructed uniquely from

3. {p(n) : p€D,(G)} are trace class anglis continuous.
Then the character gfis defined to be the linear functiongle D}, (G) given by
06 m) = Tr (p(w)
3.22. Theorem. Let G be a locally compact group. Then T.FA.E.

1. For each irreducible representatignon a spaceH, the character op is defined on a dense
subalgebraD,(G) C C*(G), for whichp(D,(G)) # 0.

2. (G is tame.

Proof. See [Kir76, p. 162] [Dix69]. O
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3.23. Theorem. An irreducible representatiop of a locally compact groug- is defined up to e-
guivalence by its character.

Proof. {a € C*(G) : a*a € D,(G)} is a pre-Hilbert space witfu,b), = (x,b"a). Complete this
to a Hilbert spacét,. The mapy : a — p(a) is an isomorphism of{, with the space of Hilbert-
Schmidt operators oft(,, HS(H,). The actions of left and right translations l6y on 7, are
mapped into left and right multiplication py(g) in H,. Therefore the representation@fin H, by
left translations is equivalent @ O

3.5 Abstract Plancherel Theorem
Remark.Recall that for compaat we had the fundamental Peter-Weyl theory which gave

?(Gidg) = P Vi@ Vi = @) Hom (V,, ;).
ieG ieG

The explicit map is given by

L*(G;dg) — Hom (V;, V)

H/f 9)pi(g) dg.

This was fundamental because of the implication that understa@dh@g{uires only understanding
L?(G;dg). The non-compact case is similar but significantly more technical. It is zapped by some
heavyC*-algebra theory.

Definition. Let A be a separablé™-algebra. Thend is called postliminal if it satisfies any of the
following equivalent conditions.

1. If = is an irreducible representation df, thenz(.A) contains the ideal of compact operators
onH,.

2. If w1, my are irreducible representations.dfwith ker (71) = ker (m3), thenm = .

3. Let’H be a Hilbert space and,, be the set of irreducible representationsfobn . Let= be
the relation of equivalence of representations. THen/= is a countably separated space.

See [Dix69, p. 99-101] [Con94, p. 460]. The equivalence of these is a theorem of J. Glimm.

Remark.Let A be a separable postliminal algebra. L&t be the setd, ¢ A consisting of rep-
resentations of dimension for n = 1,2,...,00. Then there exists a Borel field of Hilbert spaces
¢ — H((), on A, with the property

¢ e A, = H(() = Ha.

This is called the canonical field o. See [Dix69, p.174-175].
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Remark.There is a bijection betwee@/*(\G) andG for locally compact groupé&:. This endows?
with a topology. See [Dix69, p. 284-285, 353].

Remark.Let G be locally compact and'ype /. This is equivalent t@”*(G) being separable and

postliminal. Let¢ — H(({) be the canonical field of Hilbert spaces 6n(G), defined above. Sup-
pose further thatr is unimodular. Then we have the following result.

3.24. Theorem. There exists a unique measyieon G, called the Plancherel measure, with the
following properties.

1. L2 (G;dg) =[5 H(¢) @ H(C) dii(C).

2. pb = [P(C®1)daC), pP= [P(1®C) da(C).

3. If f € C*(G) then¢ — Tr(C(f)) is a lower semi-continuous function @ and f(1) =
01(f) = Jg Tr (C(f)) dn(<).

4. It f € LY(G) N L*(G), then [, | f(9)I*dg =[5 Tr (C(£)C(f)) dii(C).

Proof. These results are stated in [Dix69, p. 367-369]. They can be generalized to the non-separable
case. [

3.6 Induced Representations

Remark.Induction is a procedure for constructing representationS given representations of a
subgroupH. In many cases all irreducible unitary representation& @frise by induction from a
one-dimensional representation of a certain subgroup.

Definition. Let G be a locally compact group ard a closed subgroup @f. Let p, be a represen-
tation of H on’H. Define a linear space

L(G,H;py) ={F:G— H : FmeasurableF(hg) = po(9)F(g9)}.

Definition. Restrict attention to representations of the form

1/2
mit) = | 520 v

whereU is a unitary representation éf. Define a scalar product adn (G, H; py) by

(P, Fy) = /G (Fi(9). Fa(9))y, m(9)dpin(9).

Then it is easy to see that the invariance-of) is equivalent to

/m(hg)d,uR(h) =1, independent of.
H
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Definition. Completel (G, H; po) with (-, -) to obtain a Hilbert space which we dendi&(G, H; py).
Define a representatignof G on L? (G, H; py) by

(p(9)F)(91) = F(g19)-
This representation is said to be induced fréiy U. We writep = Ind (G, H, U).

Remark.In words, we have introduced functions which transform in a particular way under the
action of H on the left, and on these functions we have a representatiGracfing on the right. The
following gives a fundamental relation between induced representations and homogeneous spaces.

Definition. A unitary representation of a coset spdfeG on a Hilbert spac({ is a pair(t, p) where
t is a unitary representation 6f on ’H andp is a *-representation of,(H\G) as an algebra with
pointwise multiplication, and(g)p(f)t(¢~') = p(r,f), where(r,f)(z) = f(zg) is the usual right
action.

3.25. Theorem. A unitary representation of; is induced fromH C G if and only if it can be
extended to a unitary representation/éf G.

Proof. See [Kir76, p. 192] [Mac89]. O

3.7 Trace Formula: Compact Domain

Remark.Let (p,’H) be a unitary representation of a locally compact gréupSuppose thaf €
Cy (G). Recall the definition of the smearing operation

o(f) = /G £(9)0(9)dg.

Note that this is precisely the Fourier transfoft(rp), but we will make no use of harmonic analysis
in the following. The following results are from [GGPS69].

3.26. Theorem. LetI" be a discrete subgroup of a locally compact grasisuch thatl'\ G is com-
pact. Letp = Ind (G, T, py) be an induced representation @f induced fronT". If f € C, (G) then
p(f) is a trace-class compact integral operator.

Proof. Leth € L? (G, T'; py) be an element of the induced representation space, so that

h(vg) = po(Y)h(g), ~€T,g€G.
By definition we havey(go)h(g) = h(ggo) and so

p(f)h(gl)Z/Gf(g)h(glg)dg-

So we have

o(F)h(g) = /G f(g79)h(g)dg

= /F (Zf(gf 179)po(v)h(9)> dg,

~el'
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where F is a fundamental domain fioiin G (not necessarily unique of course). So we have

gl /K g1, 9 dga
with kernel

K(g1,9) =Y flgr'v9)po(7).

yel’

Becausef € () (G) and F' is compact, only a finite number of terms in this sum are nonzero.
Therefore the kernel is a continuous function, and so it is the kernel of a compact integral operator.
p(f) is clearly trace-class since the doméins compact. |

3.27. Theorem.LetG, T, p be as above. Themsplits into a discrete sum of a countable number of
irreducible unitary representations, each of finite multiplicity.

Proof. This follows from the special compact operator case of the Gelfand-Raikov theorem 8121.

3.28. Theorem. LetI" be a discrete subgroup of a locally compact gratisuch thatl™\G is com-
pact. Further assume that is tame [ype I). Letp = Ind (G, T, py) be an induced representation
of GG, induced fronT". Letp = &m,.p, be the decomposition pfguaranteed by the above theorem.
Then, assuming that both sides exist,

= Z man(f)

wherey, is the character op,.. This can be written more explicitly as

/F(ng 79)tr (po(y >d9—zmﬁ/f 9)xx(g

Proof. SinceG is tame, the required characters exist, and the r.h.s exists. The |.h.s exists by assump-
tion. The rest follows from the definition of the character as a trace. O

3.29. Theorem.LetG, T, p be as above. Assume further tliais compact. Then we have
My K t
Order Z Xi(1)tr (po(7)) -

Proof. We have for compadt, fG Xa_(g)xb(G)dg = d4. Insert this into the trace formula. We get

/dg (Zxﬁ g gt ( Po(?))) = my

verl’

/ngXn tI‘ pO ) My,

vyel

and [, dg = 1/Order(T"). O
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3.8 Discrete Series

Definition. Let (p, H) be a unitary and irreducible representation of a locally compact unimodular
groupdG. p is said to be square-integrable if there existy € H such that

(v, p(g)w) € L* (G dy) .

Definition. The discrete series ¢f, denotec@disc, is the set of square-integrable unitary irreducible
representations .

3.30. Theorem. Let G be a locally compact unimodular group and et G. Then T.EA.E.
® pcE @disc-
e (v,p(g)w) € L*(G;dg) forall v,w € H.
e pis a subrepresentation of the right regular representation.

Proof. See [Rob83, p. 153]. O

Remark.Recall that semisimple Lie groups are unimodular.

Remark.If p € Glaise We Write L? (G, p; dg) for the subrepresentation of the right regular represen-
tation equivalent te.

3.31. Theorem (Formal Dimension).Let(p, H) € Gai. Then there is a constauitp) € R, d(p) >
0, such that

1 ——
(pUL’Ul’ pU2,v2) = m(uh UQ) (Uh V2, )

Proof. Define©(u) : H — L? (G;dg) by ©(u)v = p,,. Then

(pm,vlvpu%vz) = (@(u1>vl7 @(u2>1)2>
== (1)1, @T(ul)@(uﬂvg) .

It is easy to see tha®(u;)O(uy) commutes withp. Therefore it is a multiple of the identity,
c(uy,ug)1. Similarly for vy, vo. So we have

(ur,ua)  (v1,v2) —
c(ur,ug)  c(vi,ve) A(p).

Takeu; = ugy, v1 = v, and see thai(p) > 0. O

3.32. Theorem. Let (p, H), (¢, H') € Guae. If p % ¢, then (puv, puy) = 0 for all u,v € H,
u', v eH.

Proof.

| (Puvs Purer) | < Nl ouw ] Ao
< C(u, ) ol [J'[]

by the previous theorem. So there exists an operdter, v') : H' — H with (puy, pl,) =
(v, A(u, u')v"). By the Riesz lemmathere igiae H with A(u, v/ )0’ = 6. Now ||5]|* < C'|| A(u, w')'|| ||v/||,
soljo|| < C"||v'||. ThereforeA(u, ') is bounded. But it is easy to see thiiu, v') intertwinesp and
¢'. This contradicts the assumption that they are not equivalent. Theréfore’) = 0. O
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3.33. Theorem (Formal Dimension Il). Letp € @disc. Suppose thalim p < co. ThenG is com-
pact andd(p) = dim p/u (G).

Proof. Let {e;} be an orthonormal basis @t; {e;} is finite by assumption, and
Y lennlge) P =1

for anyg € GG. By the previous theorem we have

dimp ~— 1 o o) (e e
d(p) —;d(p)( (3] Z)( 7 ])
_ Z /G dg (s, p(g)es) |
_ /G dg Y~ | (expl9)ey)
— 1 (G).
Thereforeu (G) < occ. i

Definition. If L? (G;dg) = @pE@diSCLQ (G, p;dg), thenG is called a Fell group.

Remark. There exist non-compact examples of Fell groups. See [Rob83].



Chapter 4

Lie Algebras

4.1 Introduction

Definition. Define a Lie algebra to be a real vector spgcegether with a bilinear map, -] :
g X g — g such that

L [z,y] = =y, 2].

2. [lw,yl, 2] + [y, 2], 2] + [[2, ], y] = 0.
Definition. A subspacé) C g is called an ideal ifh, g] C b.
Definition. Letad (X) be given byad (X) : Y — [X,Y]. Thenad (X) is an automorphism af.
Definition. The Killing form of g is the quadratic forni.X,Y) = Tr (ad (X) ad (Y)).

Definition. g is called semisimple if the Killing fornf-, -) is non-degenerate. is called simple if it
is semisimple and has no non-trivial ideals.

Definition. A representation of a Lie algebgeover a fieldK is a homomorphisng — gl,, (K), for
somen.

Definition. Let g be a Lie algebra. Note thatl (-) provides a representation gfon itself. If this
adjoint representation decomposes as a direct sum of irreducible representationsjstlvafied
reductive.

4.1. Theorem. A Lie algebrag is reductive if and only iff = a+ s, with a abelian ands semisimple.
Furthermore, when this holds we have- Z (g), the center ofj, ands = g, g].

Proof. By assumptiory splits asbg;, wheread (-) acts irreducibly on eachy. Eachg; is an ideal in
g sincead (-) acts irreducibly. Therefore eaghis either simple or one-dimensional. Takéo be
the sum of the simplg; anda to be the sum of the one-dimensiongal O

38
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42 s [2 (C)

Remark. The simplest non-trivial Lie algebra is the algebr& af2 complex matrices with vanishing
trace,sl, (C). The structure of this algebra is very important for the general theory, and so it is
convenient to study it first.

4.2. Lemma. The following elements provide a basis by (C) overC.

1 0 01 0 0
=0 h) =) = 08)
Furthermore, they satisfy the relations
[evf]:h7 [hve]:2€7 [h,f]I—Qf.

Proof. This is a trivial observation. ]

4.3. Theorem. Letm > 1 be an integer. Then up to equivalence there exists a unique irreducible
complex-linear representation of dimension 7, of sl, (C). The representation space has a basis
{vo, ..., vm_1} such that

Proof. O
Definition. The one-dimensional subalgebra generateflisycalled the Cartan subalgebrastf (C).

Definition. Let = be the unique irreducible representation of dimensioguaranteed by the theo-
rem. The set of eigenvalues ofh), {m —1,m —3,..., —(m — 3),—(m — 1)}, is called the set of
weights for then-dimensional representation. The vectgis called the highest weight vector.

4.3 Weights and Roots

Remark. The infinitesimal theory is probably the most important tool for Lie groups. We will be
able to construct representations of the group from representations of the associated Lie algebra. In
the compact case, the classical theory of Lie algebras is powerful enough to yield all the unitary
representations of semisimple Lie groups. The representations will be constructed from gertain
modules.

Remark.Recall thatg was defined to be semisimple if the Killing form was non-degenerate. This is
actually a somewhat involved idea. From the algebraic standpoint we might expect semisimplicity to
be a property depending on the structure of ideals of
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Definition. The derived series af is the decreasing sequence of ideals defined by

D =", D7, D=4
Definition. g is said to be solvable D* = 0 for somek.

Definition. The radical ofg, rad (g), is the unique maximal solvable ideal @f Sinceg is finite-
dimensional, the radical exists.

Definition. g is said to be semisimple whetad (g) = 0. One of our goals will be to prove the
equivalence of this definition to the previous definition in terms of the Killing form.

Definition. An elementX € g is called a semisimple elementidl (X) : ¢ — g is diagonalizable
overC.

Definition. The Cartan subalgebra gfis the maximal abelian subalgebra of semisimple elements
of g. Equivalently, it is a subalgebra which is nilpotent and which is its own normalizger[iac62,
p. 57].

Definition. Let p be a representation gfon a spacé’. A functiona : g — C is called a weight
of V if there is a nonzero vectar € V such that

(p(x) — a(x)1)*v =10, for somek.
The set of such vectors together witke V' is a subspace df called the weight space of, V.
Definition. Let p* be the representation gfacting onV* by
(z,p"(X)y) = = (p(X)z,y), zeViyeV'  Xeg

Notice that(\ — o( X ))4™ " is the characteristic polynomial fpf X ), so(p(X) —a(X)1)4mVey =0
forallv e V.

4.4. Lemma. LetV be the weight space fer. ThenV* is the weight space fora.

Proof.

By iteration then

(z, (p"(X) + a(X)1)'y) = — ((p(X) — a(X)1)*z,y).

Let £ = dim V' = dim V*. Then the right-hand side vanishes foralincel” is a weight space for
a. Thus(p*(X) = a(X)1)ky = 0 for ally € V*. SoV* is a weight space fora. O

4.5. Lemma. Let V; and V; be weight spaces far and 5 respectively. Thefr; ® V5 is a weight
space fora + (.
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Proof. The tensor product representatjor- p; ® ps acts byp(x; @xs) = p1(x1) @ o+ 11 @ pa(x2).
A simple computation gives

m

[P(X) — (@(X) + BE™ (w1 @ 72) = 3 [(X) — (X)) - 21 ® [pa(X) — BEOI™ - 2.

=0

Takem = k + k' — 1 wherek andk’ define the weight spacég, V,. Then all the terms on the
right-hand side vanish, §p(X) — (a(X) + 8(X))]™(x1 ® x2) = 0. N

Definition. Let h be a Cartan subalgebra g@f Then the representatignof g on V' also gives a
representation df. Of particular interest is the case where- ad (), the adjoint representation. The
weights associated to the adjoint representation are called the rdpis gf

Remark. Suppose thaid (Y') is diagonalizable for alt” € f. This will occur when the eigenvalues
of the matricead (V) lie in the base field; in particular it is automatic if the base field is algebraically
closed. Then the algebgawill split as a sum of root spaces

9= 00, Dga, D D fan-
4.6. Theorem. If a + (is a root theng,, g5] C ga-+s. Otherwiseg,, gs] = 0.
Proof. The setg.,, g5 is the image of the linear spagg ® gz under a mapr defined by
(3 X0 XP) =3 ad (Xg’) X,
Now we can calculate
ad (V) - [m(Xa® Xp)| =ad(Y) - [ad (Xp) - Xo], Y €
= ad (Xp) - [ad (V) - Xo] + ad ([X5,Y]) - Xa
= 7((ad (Y) - Xa) @ X5 + Xo @ [X5,Y])
=7(ad (Y) - (Xa ® Xp)).

Sor is a homomorphism afd (h) modules. Now apply the previous result regardiag V,. [

Remark.Let h be a Cartan subalgebra. Thens the root space for the trivial roat = 0. Recall
D! = [g, g]; note thatg is solvable if and only if0! is nilpotent.

Remark.Let R.. be the set of rootas such that-« is also a root, so that the following makes sense.
Then we have

h()D' = D (8090l

a€ER+

This is a simple consequence of the definitions since

D'=> [ga.gs]. andh = go.
a,B
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4.4 Cartan Theorems

4.7. Lemma. Let the base field be algebraically closed and of characteristic zerop beta rep-
resentation ofy on V. Leth be a Cartan subalgebra gf. Leta € Ry, e, € gu, -0 € g_4, and
ha = [€a; e—a). If B is aweight ofy in V' ,thens(h,) = qa(h,) for someg € Q.

Proof. See [Jac62, p. 67]. O

4.8. Theorem (Cartan). Let the base field be of characteristic zero. pdie a representation qf
onV,dimV < oco. Suppose

1. ker (p) is solvable ing.
2. Tr(p(X)?)=0forall X € D' = [g, g].

Theng is solvable.

Proof. Assume®! = g and leth be a Cartan subalgebra gf We have the decomposition into
weight spaces

V:Vﬁa@vﬂ2@"'@vﬂm
and the decomposition of the adjoint representation space
=00 Do, D Doy

h=bND' s0h =3 . (00,0 o] Leten € goy e 0 € g_a, and leth, = [eq, e

Now p(h,) restricted to somé/; has a single characteristic rogth,), sinceVj is a weight s-
pace. Therefore(h,)? restricted tol; has a single characteristic roth,)?. By assumptior) =

Tr (p(ha)?) = 35 dim V30(ha)?. By the previous lemma(h,) = rpa(ha) S00 = a(ha)? > r5dim Vs,
and soa(h,) = 0. Thereforeg(h,) = 0, and this holds for any.. Therefores(h) = 0, and so

V =V, i.e. the only weight fol/ is 5 = 0. But thenp(g,)V = 0if a # 0.

— U{go : «#0} =g b Cker(p)

— ker(p) =gohdt=(gdt)ch

= g/ker (p) = b/t

—> g/ker (p) is nilpotent, since is nilpotent.

By assumptiorker (p) is solvable, so thep is solvable. But we assume&d' = g, in which case
D = D2 = D = ... = g never terminates, and thgsis not solvable.=«. Therefore®! is

properly contained i, D' C g.

Now, if g satisfies both conditions, then so dé@s Therefore we can repeat the argument@dr

Proceeding inductively we get a proper tovi@t C --- C ©! C g. Since it is proper ang is finite

dimensional, the tower terminates, anis therefore solvable.

We assumed that the base field was algebraically closed, in order to apply the lemma. Now assume
this is not the case. L&l be the algebraic closure of the field. Extend everywhere, sdtihacomes
a space ovef, etc.
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Solvability ofker (p) implies solvability ofker (p),,. So the first condition holds fay,. Compute

T (p(X)p(Y)) = 5 [Tr ((p(X) + p(Y))?) = Tr (p(X)?) = Tr (o(V)?)]

Now an element ofi, can be writtenX € go = g ®r Q =) . w; X;, X; € g. Therefore
Tr (p(Xa)®) = D_wiwo; Tr (p(X0)p(X,)
i,

=0,

using the above computation and the second conditiop.fdherefore the second condition holds
for g as well.

So the argument follows fay,, and thereforgy, is solvable. But this is equivalent to solvability of
g. ]

4.9. Theorem (Cartan Il). Letg be a finite-dimensional Lie algebra over a figldof characteristic
zero. Thery is semisimple if and only if the Killing form is non-degenerate.

Proof. Let (-,-) be the Killing form. Letg!t = {X : (X,Z) =0,VZ € g}; theng™ is an ideal.
Clearly (X, X) = Tr (ad (X) ad (X)) = 0 for all X € g*. Therefore, by the previous theorgrh is
solvable. But by assumptignis semisimple, sg* = 0, and sq(-, -) is non-degenerate.

Conversely, suppoggis not semisimple. Then there exists an abelian idlealg, ¢ # 0. But then
clearlyt C g, and sq(, -) is degenerate. O

Remark.These proofs are taken from Jacobson [Jac62], with some changes of notation and a few
missing steps inserted.

Remark. The following shows that this simple criterion has an important consequence which allows
us to deal with non-algebraically closed fields.

4.10. Corollary. Letgr be a Lie Algebra over a base field Thengr is semisimple if and only if
gq IS semisimple for every extension fi€ld> F'.

Proof. The statement in terms of non-degeneracy- o) makes this result trivial. O

4.11. Theorem (Structure of Semisimple Algebras)Letg be afinite-dimensional Lie algebra over
a field of characteristic zero. Thegnis semisimple if and only if

g=01D DG,
whereg, are simple ideals.
Proof. See [Jac62, p. 71]. O

Remark. This result is often used as the definition of semisimplicity.
Remark.Summarizing, we have found decompositiong pfelative to any Cartan subalgeliyalt
may be necessary to pass to an extension field in order to obtain such a decomposition.Typically this
means complexifying an algebga— gc. Symbolically, the features are
[b,b] =0
g:gal@"'@gak
ad () - Xy = a(h)Xs, Xa € ga-

Such a decomposition depends on the choidg of
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4.5 Root Systems

Definition. Let g be a semisimple Lie algebra and pick a Cartan subalgebtat R be the set of
roots associated witl. R is called the root system for. The span of? in h* is called the root space
for .

Remark.Sinceg is semisimple(-, -) is non-degenerate. TheXi — (X, -) defines an isomorphism
of g andh*, and(-, -) defines a bilinear form oh*,

(X*,Y") = (X,Y).

The calculation in the Cartan theorem, showing thatp(h,)?) = >°;dim Vz3(ha)?, shows that
(-,-) is real and positive definite on the dete b*.

Definition. The set of coroots is defined as

R’:{2<a”> :aeR}c(b*)*%b.

(@, a)

We can writea” = 2a/ (a, a),

Oév<—>Oé

(h")"=1h

4.12. Theorem (Root Systems)Let R be a root system. Then

a,a)

1. {aV,8) = 2<<a’ﬁ> €7, fora,BcR.
2. fa=cB,a,0 € R, thenc=—1,0,+1.

Proof. Pick any rootx and consider the spacgs, g_... Let X4, € g+, and consider the subalgebra
spanned by{ X,,, X —a, [X,, X_,]}. The multiplication table is

2 (a, )
(@, a)

(Xa, Ho| = —2X,
(X o Ha] = 2X .

(Xo, X o] = Hy =

So this subalgebra is isomorphicdf (C). But by explicit construction (raising and lowering oper-
ators), the eigenvalues pfH,,) are integer valued for any representation

Consider the representatigif-) = ad (-). So the eigenvalues okl (H,) are integers. By defini-
tion of a root, if 3 € R then(H,) is an eigenvalue ofd (H,), SOfH, € Z. But 5(H,) =

2 («a, B) / {, ). So we have the first property.

Now Tr(ad (H,)) = -2+ 2 = 0, butTr(ad (H,)) = (a,a)(l — dimg_, — 2dimg_o, —
3dimg 3, — ---). Since(a,a) # 0, the only solution isdimg_, = 1 and the rest vanishing.
Therefore—2a, —3a, - - - € R, and similarly for+-2a, +3a,, . . .. O
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Remark. This result constrains the geometry of root systems severely. Given any twaxoats
the angle between them satisfies

cos® O =

Definition. Each roota defines a hyperplane normal to itself. Define reflection transformations
about these hyperplanes by

2 (oz,x>a
(@, a)

Wo(x) =2 —

The set of all hyperplanes cuts the root space into a set of congruent simplicial cones called Weyl
chambers. The finite group generated{lay, } is called the Weyl groupWeyl (G) or Weyl (g, b). It
permutes the elements of the set of roots.

Definition. Let R be a root system. Pick a Weyl chamlgér From each pair of rootsa € R, pick
the one which has the property, A) > 0 for all A € C. This set of roots with positive projection
ontoC' is called the set of simple rootS(R).

Definition. Let R be aroot system. A positive root system for R, C R, is given by the conditions

R=R,U(-R:), RyN(-Ry)=02.
a,f € Rywitha+ € R=— a+ (€ R,.

Note that the simple roots are precisely those roots which are not the sum of two (nonzero) positive
roots. A Weyl chamber defines a positive root system and vice-versa.

Definition. Let R, be a positive root system. A roate R, is called simple if it is not the sum of
any two other roots ii?,.. Let C' be the Weyl chamber determined by the positive root system
Then the set of simple roots @t,, S(R. ), is the set olv € R, with positive projection ont@”,
(o, Ay > 0forall X € C.

Definition. Leta;, a; be simple roots. Them;; = 0, 1, 2, 3; the matrix
2 <Q{i, Oéj)
<ai7 az>
is called the Cartan matrix.

Definition. The Cartan matrix can be represented uniquely as a diagram according to the following
prescription. As above, létbe a Cartan subalgebra with associated simple r®oEor each simple

root in S, draw one open circle. Connect the circles for raogsby a number of lines equal ta,;.

Recall from the above that;; = 0, 1, 2, 3. If m;; equals 2 or 3, then one of the roots is shorter; draw
an arrow toward the shorter root. Note that this diagram will be connected if and gnily simple.

It is called the Dynkin diagram fag.
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4.13. Theorem. Let Aut (g) be the group of automorphisms @aind letInn (g) be the inner auto-
morphisms, which are by definition given by the adjoint actiog.ohhen we have

1. Inn (g) is a normal subgroup of finite index #ut (g).
2. Aut (g)/Inn (g) is the symmetry group of the Dynkin diagranyof
Proof. See [Wol80, p. 85]. O

Remark. The A, series corresponds to the algehgas sl;,; (C), which are trace-free compléx-1-
dimensional matrices, with simply connected gr&lip,, (C). The split real form iSL;,, (R). The
compact form iSU (I + 1).

Remark. The B, series corresponds to the algebgas 04,.1(C), which are antisymmetric complex
2] + 1-dimensional matrices, with simply connected group the two-sheeted coSér@f + 1; C).
The split real form isSO(l, 1 + 1). The compact form iSO (2] + 1).

Remark. The(; series corresponds to the algebgas sp (/; C), which are complex/-dimensional
matrices annihilating the antisymmetric fouti(z, 2'), (v, y')) = 7y’ — 2'Ty, with groupSp (I; C).
The split real form iSSp (/; R). The compact form iSp (I; C) N U(21).

Remark. The D, series corresponds to the algebgas o4, (C), with groupSO (27; C). The split real
form is SO(l,1). The compact form iSO (21).

4.6 g Modules

Definition. Let V' be a vector space over a field. Suppose there exists a map (multiplication),
linear in both factors, satisfying

l.gx V-oV,z,v— 20
2. [z,y]v=z(yv) — y(av).

ThenV is called a leftg-module. Note that every finite-dimensiogaimodule provides a represen-
tation ofg.

Remark.Note thatg is itself ag-module, with multiplication given by the Lie bracket:]. This is
called the adjoing-module, and the representation which it provides is called the adjoint represen-
tation ofg.

Definition. Let7(g) be the tensor algebra ovgrLetJ be the two-sided ideal if(g) generated by
the elements of the forlY ® Y — Y @ X — [X, Y. Define the universal enveloping algebragab
be the factor algebra

Definition. The root lattice is the lattice generated by the simple roots,

Aroot - Z[S]
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The weights are the elements of the root space given by

2
Aeight = 4B € " - 2.9 Cztorallac s\,
(@, a)
This is a lattice as well, as indicated by the notation.

Definition. The dominant weights are defined by

2(3, )
Axeight = {ﬁ S Aweight : <Oz, a>

Remark.We have already defined weights to be functiontalsg — C such that for some repre-
sentationp on V there is a vector with (p(X) — 3(X)1)*» = 0 for somek. The equivalence of
this definition to the above is somewhat nontrivial. The set of all such vecwes called a weight
space for the3, V3. We have

Ve={veV :pXv=pX)vforX eh}.
Definition. Suppose€p, V') is an irreducible finite-dimensional representation. Then there exists a

highest weightGw € Aj,,,. Furthermore) is isomorphic to a specific space, constructed as

follows. Define the following

p-‘r:%Za?

ZOforaIIaeS}.

OéGR+
ng = Z Yo
acR L
=) goa
aERy
M(B), = > [Ps e 1@ C.
Pi€Z,p;>0,8—py Y pici=p
And let
M@B) = 3" M(B)sp,o-
IJGAimt
Here[e”, ..., e, ] is defined to be the subalgebra of the universal enveloping algebra generated

by the indicated elements. The spadé) is called the Verma module fgt. The subalgebra, is
called the nil-radical.

Definition. Let M be the maximal propas-submodule of\/(3). DefineL(3) = M(3)/M. Then
the spacé’ above is isomorphic to
4.14. Theorem (Cartan). Letg be a complex reductive Lie algebra. Then the association of weights
with spaces given by
B = LB+ p+)

is a bijection of AT onto the set of equivalence classes of irreducible finite-dimensignal

weight
modules.
Proof. See [Wol80, p. 97]. O



Chapter 5

Lie Groups

5.1 Introduction

Definition. Define a Lie group to be a group which has the structure(Falifferentiable manifold,
such that the group operations are smooth. Clearly Lie groups are locally compact since they are
locally Euclidean.

5.1. Theorem (Gleason-Montgomery-Zippen).Let G be a locally Euclidean topological group
which is connected. The# admits a differentiable manifold structure making it into a Lie group.

Proof. This is difficult. The proof constitutes an affirmative solution to Hilbert’s fifth problem.
[MZ55]. O

Definition. Define a Lie subgroup of a Lie grou@ to be a subgroug? < G which is also a
submanifold.

Definition. A linear group is a Lie subgroup 6¢fL,, (K), whereK is eitherR or C.

Definition. A linear connected reductive group is a closed connected linear group which is stable
under conjugate transpose. Inverse conjugate transpose for linear groups is called the Cartan involu-
tion.

Definition. A linear connected semisimple group is a linear connected reductive group with finite
center.

Definition. A Lie group( is called simple if the following hold.

e dimG > 1.
¢ (& has finitely many connected components.
e Any proper normal subgroup of the identity componentas finite.

Definition. A Lie group(' is called reductive if the following hold.

¢ ( has finitely many connected components.

48
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e Some finite cover of the identity component®@fis a product of simple and abelian groups.

Definition. A Lie groupG is called semisimple if it is reductive and the decomposition above con-
tains no abelian factors.

Remark. This definition of reductive is taken from Vogan [Vog87]. It is subject to debate. The
following is another definition.

Definition. A Lie group( is called reductive if it has a finite-dimensional representation with dis-
crete kernel such that the complement of any invariant subspace is invariant. Such representations
are called semisimple representations.

5.2 Infinitesimal Theory

Definition. A vector fieldX on a Lie groupZ is said to be left-invariant ifiT, o X = X o 7,, where
T, IS left-translation. We have some standard results summarized in the following theorem.

5.2. Theorem. Let g be the set of left-invariant vector fields on a Lie grasipThen
1. g =TG..
2. gisaliealgebrawith X, Y] (f) = X(Y f) —Y(X/).
Proof. See [War83, p. 85]. O

Definition. As usual, let denote the dual td; 6 f : T'N7,,, — TM;,. Aformw onG is called
left-invariant if 67,w = w. Left-invariant 1-forms are called Maurer-Cartan forms.

5.3. Theorem (Maurer-Cartan). Let {X;,..., X,,} be a basis forg and let{w,...,w,} be the
dual basis. Then there exist constants, such that[.X;, X;| = ¢;;,Xs, and furthermoredw; =

> <k CikiWk A Wj.
Proof. See [War83, p. 89]. O

Definition. Leto € G. Conjugation by acts on the space of left-invariant vector fields. Therefore
it induces an automorphism gf Denote this automorphism byd (o).

5.4. Theorem (Lie Modular Function). Let G be a Lie group. Letlur anddu; be right- and
left-invariant Haar measures respectively. Thérng(g) = c[det (Ad (g))]dur(g), wherec is some
nonzero constant.

Proof. Letdf = (det (Ad (g)))dur(g). LetT andp be the left and right translations, and Igy) =
7, © py-1 be the conjugation map. Then

(pa-1)"df = det (Ad (ga™")) (pa-1)*dpr(g)
= det (Ad (ga™")) I(a)*du(g).
And (I(z)*dpr(g))e = det (Ad () (du(g))e. SO
(pa-1)*df). = det (Ad (a™")) det (Ad (a)) dper(g)e

= dur(g)e
= (df)..

Thereforedd is left-invariant, and the result follows from the uniqueness of Haar measure. [
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5.5. Theorem (Unimodularity Conditions).

1. Semisimple Lie groups are unimodular.
2. Connected nilpotent Lie groups are unimodular.
3. If Ad (G) is compact therds is unimodular.

Proof.

1. Ad(g) leaves invariant the non-degenerate Killing form. Therefdee (Ad (g)) |*> = 1. Ap-
ply the previous theorem.

2. Glis nilpotent; if X € g thenad (X) is nilpotent. Therefor&r (ad (X)) = 0. Butdet () =
e M) 'sodet (Ad (exp X)) = 1. Apply the previous theorem.

3. {|det (Ad(@))| : g € G} is asubgroup oR*. If it is compact, then it is equal tp1 }. Apply
the previous theorem.

O

Definition. Let G be a connected Lie group; letbe an involutary automorphism ¢f, soc? = 1.
Let H be a closed subgroup &f and consider the homogeneous sp&gd{. G/H is called a
symmetric space if(g) = g <= g € H.

Remark.In the above situation, the Lie algebra@fwill split g = ¢ @ p, whereo (k) = k, k € ¢,
o(p) = —p,p € p, and we have

g ce [eplCp, [pp]Cl

Definition. Define the rank of a symmetric space to be the dimension of the maximal abelian sub-
group ofp in the above split.

Remark.G = SO (n+ 1), H = SO (n),

~1 0 1 0\
“W=o 1)\ 0 1..)
G/H =~ 8"
rank (G/H) = 1.

Remark.The derivativep, : ¢ — g is an isomorphism of Lie algebras, so each connected Lie
group with a given algebrgis obtained by factoring its universal covering group by some discrete
subgroup of the center of the covering group. So we see that, up to taking covering groups, the
structure of a Lie group is determined by its Lie algebra. Furthermore, Lie algebras will play a
central role in the representation theory of semisimple Lie groups.
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Remark.Recall that (possibly by passing to an extension field) we could find decompositigns of
relative to any Cartan subalgelya

[b,b] =0
9= 0o, D D Ga,
ad (B) - Xo = a(5) Xa,  Xo € o

The will depend on the choice §f However, we have the following important result, which is the
starting point for representation theory in the noncompact case.

5.6. Theorem (Chevalley).Let G be a connected Lie group with Lie algehya

1. If g is complex, then any two Cartan subalgebras Are(G)-conjugate.
2. If g is real, then there are finitely manyd (G)-conjugacy classes of Cartan subalgebras.

Proof. | do not know how to prove this. The statement is from Wolf’s lectures [Wol80, p. 79]J

Remark.The following theorem provides a direct prove of the above for the compact case. The
proof shows that this case is similar to the complex case.

5.7. Theorem. Let G be a compact and connected Lie group with Lie algefrdeth, and b, be
Cartan subalgebras. Then there existg @ G such thatAd (¢) h; = bs.

Proof. Following Bott, we first prove a statement about the orbitd.df(G). Let Oy = Ad (G) Y,
Y € g. ThenOy intersectd in a finite non-empty set of points. To see this, deffneOy — R
by f(Z) = (Z, X), whereX € gissuchthat = Lie({g € G : Ad(g) X = 0}). Oy is compact so
f achieves a minimum, say &t € Oy. Now

d
o/ (Ad(exptZ) (Y))l=o =0,
sinceY is the minimum. But the left-hand side equéls, Y|, X ). Thereforg[Z,Y], X) = 0 for all

Z € g,andsqY, [X, Z]) = 0,s0Y € bh.

Clearly Oy meetsh perpendicularly, so they meet in a discrete set of points. But since they meet
perpendicularly, the set is finite. So we see Batintersectd) in a finite non-empty set.

Now leth;, = Lie({g € G : Ad(g) X1 = 0}), and similarly forh,. Then there existg € g such that
Ad (g) Xs € by, by the intersection result. sbd (g) hy = b;. dJ

Remark.So we see that a compact connected Lie group has essentially one Cartan subalgebra, up
to Ad (G)-conjugacy, which is a trivial difference. However, the same is not true for non-compact
groups. For example, takeé = SL, (R). Then one Cartan subgroup is

H1:{<g a01) :&ER,a#O}.

The other one (there are only two) is

cosf sind
Hz_{(—sin@ COSQ) 'QGT}'
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5.3 Decomposition Theory

Remark.There are several useful ways to decompose groups into simpler pieces. These methods
revolve around the extraction of maximal compact subgroups.

Remark.Let G have finitely many components. Then every compact subgroGa®tontained in a
maximal compact subgroup. This follows simply from the local compactne&ss bfK is a maximal
compact subgroup ther/ K is a symmetric space; the involution which fix&ss called the Cartan
involution. G/ K is a complete simply connected Riemannian manifold of negative curvature.

Remark.Let h be a Cartan subalgebra gf Let R;; be a positive root system for We can define a
nilpotent subalgebra af by

Integraten to obtain a connected, simply connected nilpotent subgrou@,aV = exp,n. Let
A = expqb.

5.8. Theorem (lwasawa).Lety : K x A x N — G be the map)(k,a,n) = kan. Theny is a
diffeomorphism( = K x A x N.

Proof. O

Definition. Let M be the centralizer ofi in K, M C K. Then a minimal parabolic subgroup for
the given decomposition is the subgroup

P=MAN CG.

This decomposition is called the Levy-Langlands decomposition. Minimal parabolic subgroups are
used in the construction of the principal series of representations.

5.4 Topology of Compact Lie Groups

Remark. To begin, we will consider the classical groupsn), U (n), Sp (n).

Definition. The infinite classical groups are defined by

O () =|JO(n), SO(cc)=|]SO(n),

U(oo) = JU(n), SU(c0)=JSU(n),

Sp(00) = | JSp(n),

n>1

where the topology is the inductive limit topology. Recallthgtc X, € --- C X,, C --- C X
gives X as an inductive limit if the inclusion maps,, — X,,,, are continuous and any convex set
V' C X is a neighbourhood df € X if and only if V N X, is a neighbourhood df € X, for all n.
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Definition. The Steifel spaces are the following coset spaces, which can be identified to spaces of
k-tuples.

Vi R") =0 (n)/O(n—k)[=SO(n)/SO(n—k), k<n]
Vi (C") =U(n)/U(n—k)[=SU(n)/SU(n—k), k<n]
Vi, (H") = Sp (n)/Sp (n — k)

V,(R")=0(n), V,(C")=U(n), V,H")=Sp(n).

Definition. The Grassmanian manifolds are obtained from the Steifel manifolds by identification of
k-tuples with planes.

Gp (R") =0 (n)/(O(n—k) x O(k))
Gy (C") =U(n)/(U(n—k) x U (k))
Gy, (H") = Sp (n)/(Sp (n — k) x Sp (k)).

Similar define oriented GrassmaniansfoandC by

5Gi (R") = O (n)/(O (n - k) x SO (k))
SGx (C") = U (n)/(U(n — k) x SU(k))

Remark. Some examples.
e G, (R") =RP" I,
o G (CM=CPr .
o G (H")=HP" .
e SG; (R") =51
e SG; (H") = 521,
Remark.The coset spaces are naturally bundles, and we have the following short sequences.

O(n) =0 n+1) =V (R™) - 0 (n+1)/0(n) =1, (R™) = 5"
U(n) = U(n+1) =V, (C") = U(n+1)/U(n) =V; (C") = 5>

5.9. Theorem (Stable Homotopy).
1. Leti <n —2. Thenm; (O (n)) = (O (n+q)), m (SO (n)) = m (SO (n + q)).
2. Leti <2n —1. Thenm; (U (n)) = m (U (n+ q)), m (SU (n)) = m; (SU (n + q)).

Proof. [Hus, p.82] If we have a fibering with projectign: £ — B and fiberF’, then there is an
exact homotopy sequence

= (B) = (B) = ey (F) w1 (B) — -+ -



CHAPTER 5. LIE GROUPS 54
Therefore we have the exact sequences
ig1 (S") = mi (O (n)) — m (O (n+1)) — m; (S")
Tit1 (52"+1) —-m(UMm) -m(Un+1) —m (52"+1) ,

and similarly forSO (n) andSU (n). Clearly if i is small enough, then the sphere homotopies will
vanish. This establishes the result foe 1. Forg > 1 factor the inclusions

On)—O0Mn+1)—--—=0(n+q)
Umn)—-Un+1)—---—=Un+q).

5.10. Theorem (Steifel Homotopy).
1. Ifi <m — 1, thenm; (V;, (R¥™))=0.
2. Ifi < 2m, thenm; (Vk ((Ck+m))=0.
Proof. Again consider the exact homotopy sequence; for example
= (0 (m)) = wi (O (m 4 K)) — e (Vi (BY7)) = iy (O (m) =
By the previous resulf is an isomorphism. Clearly then (V}, (R**)) = 0 sincea isonto. [

5.11. Theorem (Group Classifying Spaces)The fibrationV}, (R>*) — Gy (R*>) is a universal
bundle forO (k). Similarly V;, (C*) — Gy (C>) is a universal bundle folJ (k); Vj (R*) —
SGy. (R*) is universal forSO (k); Vi, (C*) — SGy (C*) is universal forU (k).

Proof. This follows from the above stability results together with the definition of universal bundle.
See [Hus, p.83]. O

Remark. At this point is relatively straightforward to calculate some homotopy groups for the clas-
sical groups. We use the fact that the fibratkin (n) — O (n) — Z, gives the exact sequence
0= 71 (Zs) — m (SO (n)) — 7 (O (n)) — m (Zs). Similarly 0 = 741 (S') — 7 (SU (n)) —

i (U (n)) — m (S7).

5.12. Theorem.

1. Ifi > 1 thenm; (SO (n)) = m (O (n)).

2. Ifi > 2thenm; (SU (n)) = m; (U (n)).

3. Ifi =1thenw; (SU (n)) — 71 (O (n)) — Z — 0.
Proof. An easy consequence of the sequences in the above remark. O
5.13. Theorem.

1. m (O (n)) = m (SO (n)) = Zy, forn > 3.

2. m (0(2)) =m (SO (2)) = Z.
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3. m{U(n)=2%Zn>1.
4. m (SU(n)) =0,n > 1.
5 m (Sp(n)) =0,n>1.

Proof. For U (1), SU(2), andSp (1) = S?, simply calculate and then use the stable homotopy
result. ForO (2), calculate. FoiO (3), and thusO (n > 3) by stability, use the homeomorphism
SO (3) @ RP3. So we see that, (G) is a trivial consequence of stable homotopy. O

5.14. Theorem. If G is one ofO (n), SO (n), SU (n), Sp (n), thenm,y, (G) = 0.

Proof. UseSO (3) — SO (4) — S? to get the exact sequenfe= 7, (SO (3)) — m, (SO (4)) —
7y (S%) = 0. Thereforer, (SO (4)) = m (O (4)) = 0. By stability thenm, (SO (n)) = 72 (O (n)) =
0 for n > 4. We already noted that, (SO (3)) = 0. That proves the result for tt#O (-) series. The
rest are even easiet. O

Remark. This result onr, (G) is actually true for any compact Lie grodg though the general proof
is significantly more complicated than the above.

5.15. Theorem.

1. 73 (U(n)) =m3(SU(n)) =2Z,n > 2.
2. m3(Sp(n)) =7Z,n > 1.

Proof. As noted beforeSU (2) = Sp (1) = S®. Soms (U(2)) = 73 (SU(2)) = Z = 73 (Sp (1)).
Then the result follows from stability. O

5.16. Theorem (Hopf). Let G be a compact connected Lie group. Then for some intefers
depending oriz we have

H* (G,R) = H* (H s%al,R) :

07

Proof. | do not know where to find the proof. The statement is from some lectures by Bott. [Bot77].
O

Remark. The set{k, } is called the set of exponents Gf We have

1%

H*(SU (n),R) =2 H*(SU(n—1),R) ® H* ($*"",R)
H* ($*,R) @ H* (S°,R) ® --- @ H* (S*" ", R),,

H* ($*,R) @ H* (S",R) ® --- @ H* (S*"",R).

1%

1%

H" (Sp (n) , R)

These are apparently easy to prove using the obvious fibrations and induction.However, the induction
fails for SO (n), and the results there are more complicated. See Ref. [Bot77]. Bott appears to prove
at least parts of the general statement, using some nifty Morse theoretic construction.
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Remark.The universal covering group of a Lie group exists, as it does for a general topological
group. Recall that it~ is the universal covering group 6f, then

G = G/N,

for some discrete normal subgrolys N is the kernel of a group homomorphigm: G — G,
N = ker(p), andN = m; (G), which we can at the very least calculate using an exact sequence
[there are probably easier ways].

Remark.Consider the map — gng ' forn € N. Thisis amagsy — N for eachn; itis continuous,
but NV is discrete so it is a constant map. Theref@ug ! is independent of, soN is a subgroup of

the center of7, Z (G‘) Therefore, in particulaty = 7, (G) is abelian



Chapter 6

Representations of Lie Groups

6.1 Compact Lie Groups: Weyl Formulae

Remark.We have seen the following facts for compact topological groups.

e From the general theory of locally compact groups, we know that irreducible representations
are completely determined by their characters.

e From the theory of compact topological groups, we know that the representations to be consid-
ered are irreducible, automatically unitary, and automatically finite-dimensional. Their charac-
ters are jusilr (p(-)). The Peter-Weyl theorem further asserts that all of these representations
occur in the decomposition of the regular representafidii(; dg) = ©V; ® V;*, which is the
existence theorem for harmonic analysis(en

The actual construction of representations is left open in general. In the case of compact Lie groups,
Weyl's theory solves this problem explicitly. Compact and acceptable Lie groups obey the Weyl
character formula, which determines the characters of all the irreducible representations, The dimen-
sions of the representations are determined by the Weyl dimension formula, and the explicit structure
of the representations is given in terms of Verma modules.

Remark.Recall the definition
1
=32 a
aERy
whereR, is a positive root system fagr. See 4.6.

Definition. Let 7" be a Cartan subgroup @f, with associated Cartan subalgehraG is called
acceptable if there is a characterlaf¢,, , satisfying

& (expY)=er~) Vet

Remark.Charactersy can be identified with linear functions(y), x(expY) = A0 Weyl
discovered that if7 is compact, simply connected, and semisimple,then its universal covering group
is compact and acceptable. This makes the assumption of acceptability in the following theorem
interesting.

57
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6.1. Theorem (Weyl Character Formula). Let G be a compact, acceptable, and connected Lie
group. LetR, be a positive root system. Then the irreducible character& afre in bijective
correspondence with the positive characterg of

Let y be a positive character df, then the corresponding irreducible character@f ©,, is given
by

O,=| Y det(w)(xow) %,

where
at=g! T @ -,
aERT

Furthermore/,, is a positive charactef),, is the trivial character, and
At = 3T det (w) (&, ow).

Proof. The character formula can be proven in the general algebraic context. It is a moderately long
calculation. See [Jac62, p. 249]. O

6.2. Theorem (Weyl Dimension Formula).Let G be as above. Let, V), be the representation on
the g-moduleV, = L(X + p, ), corresponding to the highest weight Then

. <>\+p+,04>
dlmV)\: H W

acERL

Proof. See [Wol80][Jac62, p. 256]. O

Remark. The dimension formula can be expressed in a very explicit wayxlbet any positive root.
Define coefficients; by expressingy as a linear combination of the fundamental roots,

l
a = E ]{JZOAZ
1=1

These coefficients; are integral and non-negative. Also, express the dominant integral weaght
a linear combination of the fundamental weights,

l
i=1

Them, are also integral and non-negative. Finally, given any positiveaat#finec(«) by (o, o) =

c(a) {ag, ), Whereqy is a root of minimal length. From the constraint on the Cartan matrix we
know thatc(«) can equal 1,2, or 3. Furthermoré¢) can equal 3 only for the cagé,. Then we
have

: Soiy Ki(a)e(a)(mi + 1)
dim V) = == i
ale;[+ > i1 ki(a)e()
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6.2 Compact Lie Groups: Borel-Weil Theory

Remark.Borel-Weil theory provides explicit realizations of the representations for compact Lie
groups as spaces of holomorphic sections of explicit vector bundles.

Definition. Let G be a compact Lie group with maximal toridis Letn, be the nil-radical ofj, with
conjugate subalgebra . Define the Borel subalgebras

b:t(c@n+,
b =tcDn_.

Definition. Let G be a compact Lie group with complexificatiof-. Define the Borel subgroup of
Gc, B= HN_ C G¢,whereH = exp(tc), N_ = exp(n_).

Definition. Let\ € AJ .-

Define the homomorphism : B — C, by

Mexp(t+n)) =, tete,nen_.
Thene is a holomorphic map and it is a representationfobn C. Let £, be the associated
holomorphic line bundl€ , with base¢/B. We are especially interested in sections of this bundle,
which we can identify with complex functions @#- which transform by the representatiehunder
translations byB.

6.3. Theorem (Borel-Weil). Let H°(L,) denote the space of holomorphic section£ of ThenG
acts onH°(L,) by the irreducible representation of highest weight

Proof. There is a detailed discussion of this construction in [Vog87, ch. 2]. For a short proof see
[Wol80, p. 106]. O

6.3 Whatis a Character?

Remark.So the representation theory for compact Glas solved. All the questions are reduced

to certain technical calculations using the results of the Weyl theory. The noncompact Lie case is
much more involved. In particular, the characters must be constructed, and we know that in general
they will be distributional. Infinite-dimensional representations will be indispensable. Methods for
construction of representations will be important. In particular, induction from subgroups will enter.

Remark.We have seen the importance of characters. Recall that our discussions of topological
groups showed that an irreducible representation of a locally compact group is determined up to
equivalence by its character. Therefore it will be important to construct the characters as explicitly as
possible. This construction is due to Harish-Chandra, and constitutes one of the great contributions
to mathematics in the twentieth century. The basic goals for noncompact Lie groups are then

e DetermineG.
e Determine the Plancherel meastire

e Find an analogue of the Weyl character formula.
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Remark.What do the characters look like for infinite-dimensional representations? To get some
idea, considet = S!. Let p be the regular representation, acting’én= L? (G;dg). Let{e,} be

the basis{e™’ : n € Z} of H. ThenG acts onH by p(e”)e,, = e ’¢,. We would like to define

the character to be

Xol(€”) = T (pl(e)) = 3" .

n

This converges weakly, (") = §(6). So apparently the characters of infinite-dimensional repre-
sentations may be distributions. But we would also like to check that nothing too weird happens for
representations other than the regular representations.

Let p be an arbitrary unitary representation@f= S!, acting onH. LetH, C H be the subspace
on whichp acts by multiplication by™*’. Then we write

H =&, H,.

EachH,, decomposes into copies of the basic representation space onmdethby multiplication
by ¢, H,, = m,V,, SOH = ®,m,V,. EachV,, is finite-dimensional. Suppose that, = O(n*)
for somek. Then we can define

Xp(ew) _ Z mneme.

By the assumption om,,, this converges weakly to a distribution.

So we see that not all representationgof= S' have a nice character. But the ones for which the
multiplicities {m,,} do not grow quickly will have characters which are distribution&£6n(G). We

will see that the required control of the characters is obtainable Whsnconnected, semisimple,
and has finite center [which' does not].

This useful look at the circle group was provided by Atiyah.

6.4 Harish-Chandra Program; Analytic Vectors; From gto G

Remark. The Harish-Chandra program is a systematic approach to linearization of the representation
theory, reducing the questions abaéito questions aboyi. Because the representations are infinite-
dimensional in general, certain problems must be overcome. Starting with a representétion of

a spacé/, we will consider the representation of a maximal compact subgfouf he basic tool

in the semisimple case is to show that this picks out a set of vectors on wlacts. This set of
vectors will be called the set df -finite vectors, and passing to this set will reduce the representation
theory to algebra. The detailed description of this procedure is given in the following. Note that this
procedure is known to be inadequate without the assumption of semisimplicity.

Remark.Consider the simple case of a finite-dimensional representgtioni), dimV < oc.
Clearly we can get a representatiorgpficting onV/,

d
p(X)v = %p(exth)vh:O, velV.
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To go backwards, from, to p, assume= is simply connected. Then there is a uniguguch that

plexp X) = exp(p.(X)).

So the finite-dimensional case allows a simple relation between the representag@amsiof, where
it may be necessary to take a covering spacdg.of

Definition. LetV be a Banach space carrying a representatmii;. Define the set of differentiable
vectors

VoV ={veV :g—plgrisinC®(G)}
={veV g (wplg)) isinC>*(G) forallw e V*}.

Definition. Introduce a representation gion V> by
pe(X)v = %p(exth)v\tzo, veVe.
Let the Garding space &f be the space
Ve = Span{p(f)v : f € C5(G),veV)

wherep( f)v is well-defined forf € C° (G) by

p(f)o = / F(9)olg)v dg.

6.4. Theorem. V;° C V andV;* is dense irl/.

Proof. Let w € Vy°. So we havew € Span{p(f)v}. Without loss letw = p(f)v for some
feCe(G),ve V. Then

p(g)w = p(g)p(f)v = i f(g)p(g)p(g )vdg

=7 (97'9")p(g")vdg'.

Sincef € C§°(G), we can differentiate with respect gaunder the integral, and so € V.

Now we can prove the density result. ket V. Consider the sequenge( f,)v} where{ f,} is an
approximate identity.

lo(fa)o —v]| < / Fu(@)] 1o(g)w — o]l dg

supp(fn)

<C sup |p(g)v—1
g€supp(fn)

— 0.

Thereforep(f,,)v — v. O
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Definition. The space of analytic vectols?, is given by
VoveoVvY={wveV :g—(wplgv)isC”onGforalwe V*}.
6.5. Theorem (Nelson).V¥ is dense ir//.

Proof. Letv € V. If we can find an approximate identifyf,,} consisting of analytic functions, the
smearing with{ f,,} will produce the sequence of approximants that we want, similar to the smearing
with C§° (G) functions in the Garding construction. In the analytic caseftheannot be compactly
supported, but they must be chosen so that they die sufficiently rapidly.

Let X; be the generators of right translations bh(G; dg). Let A be the unique self-adjoint ex-
tension of the operatok? + X7 + --- + X2, where we can take the domain to 6¢°(G). For
f e Cse(q), let

o(t, g) = (exp(tA)f)(g),

so¢(t, g) is a solution of the heat equation 6h It is a simple exercise to show that,dfg) is the
geodesic distance to the identitye G, then

(exp(5d(9))6, 6) < expl55%d(9)) (exp(sd() ], f)-

SinceA is an elliptic operator with analytic coefficients, the solutions of the heat equation are analytic
functions fort > 0. So if f € C5°(G) then the following integral representation defines an analytic
function fort > 0,v € V,

Fr(tg) = /G exp(t2) ())(g " 9)o(g Yo do'.

Let { f,.} be an approximate identity and It} = {1,1/2,1/3,...}. Take the diagonal sequence
asf, — 9,t,, — 0,and so

I Fy, o (tn, ) —v(-)|| — 0.

But each/ (...)isinC¥(G), andv € V is arbitrary, sd/« is dense in/. O

Remark.Using the heat kernel to smooth a sequence of functions is a standard trick. The proof
above is a little sketchy. For more details see [BR77, p. 358].

Remark.Note that the sel’ forms a common dense domain for the operators of the representation
{r(9) : g€ G}

Remark.This type of construction can be extended to semigroups and arbitrary manifolds. The

method was initiated by Nelson and Garding around 1960. Harish-Chandra’s 1953 proof and analytic
construction were different, and somewhat more complicated.

Remark.Let G be connected, semisimple, with finite center. Recall that suGhhas an Iwasawa
decomposition

G=K-A-N,

whereK is compactA is abelian, andV is nilpotent.
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Definition. Let p be a representation @ on a Banach spac¥, and suppose that admits an
Iwasawa decomposition. For a representatiaf K, x € K, let

V¥(k) =V>=nNV(k),
whereV/ (k) is the representation space farl/ (k) C V. Let
Vi = V¥(k).
rEK
6.6. Theorem (Harish-Chandra). V;, is dense ir//.

Proof. Let v € V be arbitrary. For each > 0 there is aw € V* with |[v —w| < ¢/2. Since
Ve C Ve, w e Vo, and so) | k(K )w converges absolutely te. Therefore, partial sums of
> . k(K)w can be chosen arbitrarily close#o O

Definition. v € V is called K -finite if
dim Span {p(k)v : k € K} < 0.
In particular,p is called K -finite if eachV/ (k) has finite dimension.

Definition. Recall some definitions that we have seen befdye.V) is called topologically irre-
ducible (TI) if V' has no proper closed G)-invariant subspacgyp, V) is called topologically com-
pletely irreducible if forT : V' — V bounded{v,...,v,} € V, e < 0, thereis anf € C°(G)

with [|(p(f) — T)v;|| < efori =1,...,n. This notion is interesting because it appears in the general
Schur’s lemma.

6.7. Theorem (Schur).If (p,V) is TCl andT : V — V is a bounded linear transformation
commuting wittp(G), thenT" = cl.

Remark. Gelfand calls the propertiip(G) = p(G)T = T = c1 “operator irreducibility”. He calls
topological irreducibility “subspace irreducibility”.

6.8. Theorem. Let(p, V') be unitary and TI. Then itis TCI.

Proof. Let A be the set of bounded linear transformationd/osatisfying
{TonV : {vy,...,0,} CV.e>0,f e M(G),|[(p(f) —T)vi|| <efori=1,...,n}.

So A is the algebra of operators dn satisfying the conditions in the definition of TH is a von
Neumann algebra. Alsgp(G) C A. By the assumption, using Schur’s lemma, we hd¢e- C. But
A is weakly closed, so by the von Neumann bicommutant theot&m= A. SinceA* = C° which
is the set of all bounded operators, the algeldres in fact all the bounded operators. Therefore
(p,V)is TCI. O

Definition. Let Z (g) denote the center of the universal enveloping algébig). Let M/ (\) be a
weight space generated by a highest weight vector of weighy > ocr, @ Define the infinitesimal
character to be the map giving the actionzbfg) on M (\), x» : Z (g) — C.

6.9. Theorem. Let (p, V) be a unitary and Tl representation of a connected gréupThen it has
an infinitesimal character.
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Proof. See [Wol80, p. 111]. O

6.10. Theorem. Let G be connected, semisimple, with finite center. (let’) be TI. Therp has an
infinitesimal character if and only if it is TCI. In that cagdas K -finite and

Vic = Z V (k).

Proof. TCl = infinitesimal character follows from the above. For the converse see [WolI80, p. 115].
See also [Var89, p. 143-144]. O

6.11. Corollary. LetG be as above. Léfp, V') be a unitary representation @. If f € L' (G;dyg),
thenp(f) is a compact operator. Thus is Type I.

Proof. By the theoremp is TCl and K-finite. p..(7.)p(f) = p(7. * f) are operators of finite rank.
The sum

S pe(me(f)

k€K

converges strongly tp(f), sop(f) is a strong limit of finite rank operators, and therefore compact.
O

Remark.The above results guarantee that irreduciblenich areK -finite will play a central role in
the following. The goal is to prove the existence of a distributional character for

Definition. Let {X;,..., X, } be generators of chosen such thatX;, X;) = —¢;;. Define the
differential operators

wie = =(XT 4+ X0,
E:1—|—a}K

These operators are elementszfg). As such they act as multiples of the identity on irreducible
subspaces. For € K, defineC, (F) to be the unique eigenvalue afacting onV (k).

6.12. Theorem.

1. C.(E) > 1.
2. For sufficiently largen, >, C.(E)™™ < oc.
3. There are constants> 0, r > 0 such thaidim x < ¢C,.(E)" forall x € K.

Proof. Without loss we can take a finite cover Af, and write X' = K; x T whereK; is compact
and semisimple and is a torus. Thewy = wg, + wr. Clearlywi > 0 so 1 is obvious.

If we consider,, we see thal’ = Z, wy = —d?/d6?, ") — 1 4 n2, dimn = 1. Therefore 2 and
3 are clear for the torus part &f.

Now consider the semisimple pdkt; ; from the basic structure theory of semisimple Lie algebras,

E1=f)@?a1 @Eag@"'@eoﬂ\f7
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where

h= Z [Ea7g—a]’

OLERi(ﬁ)

Then
= ]{12 +oe-t H12v1 + Al(onlX—ozl + X—olem) + A2(X0c2X—Oc2 + X—azXaQ) + -

By induction it is sufficient to considér = sl, (C) = su (2). In that casds; = Z+ = {0,1,2,...},
C.(E) = (n+1)% anddimn = n + 1. Then the results 2 and 3 follow.

Finally, given 1,2,and 3 fo¥; andT" separately, and usingx = wg, + wr, the results follow for
K. O

Definition. Let G be connected, semisimple, with finite center. The Harish-Chandra chagaater
given by

©,=Tr(p(f)), feCT(G)

/f

6.13. Theorem. Let G be connected, semisimple, with finite center. (gel’) be a unitary irre-
ducible representation @¥. Thenp( f) is trace-class forf € Cg° (G), so the above definition makes
sense.

Proof. By the K-finiteness resultdim V() < oco. Let {egk)} be an orthonormal basis fof (k).
Now

< Fo(fe (k2)>‘ = Cp, (B) "Cp(E)" < o Erp(f)ETez('mw'

Define the operatob” by
[ HaE9E = [0 Do),

If P, is the projection ontd (x) then
S pez | [ 11110

The numberg| P, E*" P, || are simplyC,.(E)?, so they decrease to zero sufficiently rapidly for to
be a differential operator ofi. Then we write

| / F(9)E"p(9)E"| <

(e el ) < By Cuat)™ [ ol 171

Then, usinglim V' (k) < oo again,

2 e etnd)1<c

k1,k2,i,7

> Co(E)"Cw(E

k1,k2

/ loll D7 .
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By the previous lemma, we can choossufficiently large that the sum converges, and so

S e ptnel?) 1< ¢ [ ol D7

ki ki g ¢

The right-hand side is a seminorm 6§°(G), so

> (e p(nel) | < oo
k1 k2.,
This impliesp(f) is trace-class. O

6.14. Theorem. ©, is a distribution onC§° (G).

Proof. > _, k(en, p(f)en) is continuous orCg® (G) and tends t®,(f) ask — co. Cf° (G) is
an inductive limit of Frechet spaces, 89(f) is continuous orCg° (G) by the Banach-Steinhaus
theorem. O

Remark.The second result of Harish-Chandra, which is the deepest of this set of results, is the fact
thatO,(f) is actually represented by a locally function which is moreover “almost” analytic. This
hinges on the use of differential equations which follow from #k(G) invariance ofo,(f). The
invariance follows from the following computation

6,(/ - Ad(¢) =Th ( [ #ag 000 dg)
=Tr ( /G F(9)p(d'99 ) Ac(9) dg)

sinceAg =1

This is a system of differential equations,

20, = X,(2)0,, z€ Z(g).
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Definition. The regular set of7 is defined by
Reg (G) = {g € G : g*¥ is a Cartan subalgebra g} .

6.15. Theorem. Let© be an invariant eigendistribution off. Then®© is represented by integration
against a locallyZ! function which is analytic ofkeg (G).

Proof. The original Harish-Chandra proof is very complicated. For a simplified version, see [AS77].
O

Remark.A discussion using the example 9., (R) is given by Schmid [Sch77]. A discussion of
the Harish-Chandra approach is given in some detail by Varadarajan [Var89, p. 208-220].

6.5 Induced Representations of Lie Groups

Remark.The concept of induced representations has been introduced previously for general topo-
logical groups. In the case of Lie groups, they have an interpretation in terms of vector bundles over
H\G.

Remark.For anyxz € H\G, we can get to any point in a neighbourhoodzoby the right action

of G. In other words, giverr € H\G and a neighbourhootd” > z, there exists a smooth map

s : W — G such that

zs(y) =y, YyeWw.
This is easy to show using tlkep map.
Remark.Cover H\G by nbhds. of the above forn{JV;}. Define transition mappings by
sy WinW; — G
y e si(y)si(y) ™

Let p be a finite-dimensional representation/éfC G on a spacé’. Then the coveringW;} and
the mapsg; — p(s;;(y)) define a vector bundle ovéf\G which we denotér,. Clearly £, depends
only on the equivalence class @f £, admits az action, and so it is &-bundle.

Remark.Given aG-bundleE over H\G, the vector space of sectiofig F) carries a representation
of G,

(p(g9)s)(z) = s(zg) =€ H\G,g€G,sel'(E).
6.16. Theorem. EveryG-bundle overf\G is equivalent to a bundl&, for some representation

Proof. Constructp in the following way. Letx, € H\G be an arbitrary point stabilized b .
Then vectors inV,, remain inV,, under the right-action by?. Therefore this action defines a
representatiop on 'V, . U

Definition. LetC> (G, H, py) be the space of smooth functions@mwith values in/” which satisfy

F(hg) = pu(h)F(9).
C*> (G, H, p) is right-invariant. Therefore we can define a representatia#, of

(P(9)F)(g1) = F(g19)-
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6.17. Theorem. The representation o6 (G, H, py) defined here is equivalent to the representa-
tiononl' (E,,) given above.

Proof. Lets € I'(E,,,). Define f, such that

(m(9), mfs(9)) = (Hg, s(g))-
The relations < f, is an isomorphism of (E,,,) ontoC* (G, H, pg). O

Definition. Suppose now thatl is connected. Define a representatioof 4 on C*> (G, V') by

(o(h)f)(g) = pu(h)f(h~'g).

ThenC> (G, H,py) = {F € C>*(G,V) : Fisinvariantunder}. Let o, be the corresponding
representation of the Lie algebra &f b.

6.18. Theorem.C*™ (G, H, py) coincides with the space of solutions of the system of equations
o.(X)f=0, XebhfeC®G)V).

Proof. Since H is connected, it is generated by an arbitrary neighbourhood of the identity. Some
neighbourhood of the identity is covered byp, though not necessarily all @. Pick one such
generating neighbourhood. Invariance(f (G, H, py) by o(G) translates into local invariance of
C*> (G, V) by o, [take the derivative], and this must hold everywheré&in O

Remark. The equatiow, (X)f = 0 is equivalent to

> f+pu(X)f =0, X eb,

wherery is the left-translation oz corresponding toX' € g. This invariance condition admits a
very interesting construction. Complexify the Lie algelyra= g ®r C. Letn be the complex hull

of the real subalgebracorresponding tdf C G. Letr be a representation of the complex algebra
n corresponding to the representatjgn of H. Then the solutions of

xf+r(X)f=0, XeEn
coincide with the solutions of

[ +pu(X)f =0, Xeb.

Remark.As an example, considét = R?, g = R?, gc = C2. Letn be the one-complex-dimensional
subalgebra generated By + /Y. Letr be the one-complex-dimensional representation which
takes the value € C at X + Y. Then the invariance equation is

of  .of

— 4+i=—=+\f =0.

ox + Z@y +AS
Thereforef = exp(—\z/2)¢(z), with ¢ holomorphic. Therefore there is a certain built-in holomor-
phicity; the invariance equations are related to conditions of holomorphicity. See [Kir76, p. 202].
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6.6 Principal Series

Remark.In the following letG = K AN be an Iwasawa decomposition@f whereG is connected
and semisimple. LeP = M AN be a minimal parabolic subgroup.

6.19. Theorem. Every finite-dimensional irreducible unitary representatignof P has the form

pr(man) = x(a)pu(m),
wherey is a character ofA andp,, is an irreducible representation aff.

Proof. Recall thatAN is connected and solvable. Therefore all its irreducible representations are
one-dimensional. So there is a characterddf and a vectow, such thatpp(an)vy = x(an)wvy.
But x(n) = 1foralln € N. pp(M)v, is stable undepp(man). But pp(man) is irreducible by
assumption. Therefores (M )vy = H. Thereforepp(an)v = x(a)v for all v € H. O

Definition. Let M be the normalizer ofi in K. ThenW, = M /M is called the restricted Weyl
group ofG. W, acts on representations df A.

Definition. Leta be the Lie algebra ofl. Let
5 1 Zd.
= — mg,.
g 2,8

Define g, ,(man) = pu(m)exp((0 + in)log(a)) forn € o', u € M. This is an irreducible unitary
representation oP on V' (p).

Definition. Consider the induced representations

T(p,n) =Ind (G, P, Buy) -

These representations form the principal seriesS of

6.20. Theorem.

e T(u,n)is unitary if and only ifp is real,n : a — R.
e T'(1,n) isirreducible for alln € o’

Proof. [Bru56] [PT67] [Kos69] [Wal71] [KS71]. O

6.7 Discrete Series

Remark.Recall the definition of the discrete series of representations of a locally compactd@roup

For the case whef¥ is a semisimple Lie group, a great deal can be said about the construction of its
discrete series. These are the celebrated results of Harish-Chandra, and they are necessary to procee
with harmonic analysis on the group. In fact, the discrete series and the principal series together have
full Plancherel measure, so no other representations are required for harmonic analysis.
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6.21. Theorem.T.FA.E

i @disc 7& @
e rank (G) = rank (K)
e (G has a compact Cartan subgroup.

Proof. [HC66]. ]

Remark.The original discrete series construction of Harish-Chandra is long and difficult. Atiyah
and Schmid have given a simplified approach basefi‘andex theory for the Dirac operator on an
associated compact quotient space [AS77].

Remark.See [Wol80, p. 123].



Chapter 7

Co-Adjoint Orbits

Remark.Let G be a Lie group with Lie algebrg. Denote the dual space gfby g*. Recall thaty
carries a representation 6fvia the adjoint mapAd () : G — Aut (g), which is the derivative of
the conjugation mapd () = A.(1), A(g) : h — ghg~'. The spacg* is naturally realized as the
space of left-invariant differential 1-forms @n

Definition. The coadjoint representation @facts ing* by right translations.
Remark. Consider the case of matrix groups, whéi@, = Mat,, (C).

7.1. Theorem. Let G = GL, (C). A left-invariant vector field orfz is a matrix-valued function
v(g). Every left-invariant vector field o& has the form

va(g) = gA, forsomeA € Mat,,(C).
Under the action of right translation we have
(ry)va = Vy-144, Yy €G.

Proof. Left and right translation are linear maps. Therefore they are equal to their derivatives. So we
have

Tv(g) = yu(y~'g) leftaction r,.v(g) =v(gy )y rightaction
Left-invariance means(g) = yv(y~'g), thereforey~'v(g) = v(y~'g). Let A = v(1), sov(y~!) =

y~ 1A, Thusv(g) = gA for someA € Mat, (C). Finally, givenv(g) = gA, the action of right
translation is clearly as claimed. O

7.2. Theorem. LetG = GL,, (C). A left-invariant 1-form on is a matrix-valued function(g).
Every left-invariant 1-form oid- has the form

wp(g) = Bg~', forsomeB € Mat,(C).
Under right translation we have

(r,)wp = wypy-1, Y EG.

71
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Proof. We identify Mat,,(C)* = Mat,,(C) using the dual pairing ové® (X,Y") = Re Tr (XY).

The action ofr; on forms is defined by the dual pairing and the actiom,ofon vector fields. We
write

Tr ((rjw)v) = Tr (w(ry,v))
= Tr (wvy)
= Tr (ywv) .

_This _must be true for arbitrary, so we haver;w = yw(gy). Similarly 77w = w(yg)y. Left-
invariance ofv meansv(g) = w(yg)y. Let B = w(1), sow(y) = By . O

Remark.Note that orbits of7 in g* under this coadjoint representation represent classes of similar
matrices.

Remark.In our discussion of induced representations for Lie groups we encourteleohdles
over H\G, which could be written in terms of vector-valued functions. As a special case we note the
following facts.

G-invariant differential forms o7\ G correspond uniquely té/-invariant elements oi (bi). A
function onG corresponding to &-invariant form is a constant with values/m(hi), and its value
is an H-invariant element.

If ® is an invariantk-form on H\G which corresponds to the exterior fone A* (bL), thend®
corresponds to

1

A (pY) 3 do(Xa, ..., X)) = "

S (1) G(X X)L X X,

1<j

7.3. Theorem. Consider the orbits of7 in the coadjoint representation. LeXbe such a coadjoint
orbit. Let F' € €, an arbitrary point on the orbit. Let» be the stabilizer of". Then we have

ar = ker (BF)
where
Br(X,Y)=(F[X,Y]).

Proof. ker (Br) ={X € g : Brp(X,Y)=0VY € g}. Now

d
Br(X,)Y) = <EK(eXth)F|t:07Y> ;

whereK (g) is the coadjoint representation. The assertion follows. O

Remark.Now we will construct a 2-form on the space of a given ofbitBr (X, Y') depends only on
p(X),p(Y) wherep : g — g/gr is the natural projection. Therg, gives rise to a skew-symmetric
bilinear form ong/gx. Clearly this form, which we calBr, is non-degenerate.

7.4. Theorem. By is a G p-invariant element oA (g/gx)".
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Proof.

p(9)Br(X,Y) = Bp(Ad (g7') X,Ad (¢7') Y)
= (K(9)F,[X,Y])
— 0.
O

Remark.Using the correspondence between elements @fL) andG-invariant forms, we have a
non-degeneraté-invariant 2-formBg on 2 = G \G. It can be shown thaB, does not depend on
the choice ofF’ € ). Using the formula for/® given above, it can be shown tha, is closed.

Therefore we have found@-invariant symplectic form on the orbit spage () is a homogeneous
symplectic space.

7.5. Theorem. Let G be a connected Lie group. Then evérysymplectic manifold is locally iso-
morphic [i.e up to taking covering spaces] to a coadjoint orbitCobr of a central extension df
with the aid ofR.

Proof. See [Kir76, p. 234]. O

Definition. An orbit is called integral ifB,, belongs to an integer cohomology class, i.e. the integral
of Bg over an arbitrary 2-cycle is an integer.

7.6. Theorem (Borel-Weil-Bott). All irreducible representations of a compact, connected, simply
connected Lie grougpr correspond to integrad7-orbits of maximal dimension ig.

Proof. See [Kir76, p. 241]. O

Remark.The condition of integrality is equivalent to the quantization condition of “old quantum

theory”,
f pdq = nh.

Definition. Define a generalized functiafy, by

(o, &) = /Q { /U blexp X)2EN X | dfg(F),

whereg € Ci° (G) is defined in an open regidn € G, andU is the inverse image df in g; dX is
ordinary Lebesgue measure gn and

1
dfo(F) = EBQ A--- A\ Bq, 2k factors

Remark.One conjectures that the character of a representation associated to an orbit is given by

Xa =g Lo,

wherepg, is some function irC> (G) which is invariant under inner automorphisms, equals 1 at the
identity, and is different from zero on the open regidn This is the so-called universal character
formula. So far this conjecture has been proven in the following cases.



CHAPTER 7. CO-ADJOINT ORBITS 74
e Representations of compact simply connected(L.ie
¢ Representations of exponential groups.
e Representations @kL; (R).
e Representations of the principal series of noncompact semi-simple groups.

See the papers of Kirillov.

Remark.For representations corresponding to orbits of maximal dimension, a single universal func-
tion p can be selected,

q(exp X) = det (((ad (X)))

) = sin?/(é/?).
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Projective Representations

Remark. This material is taken from Kirillov's book. See [Kir76].

Definition. Let V' be ann-dimensional linear space over a figld Let PV be the corresponding
projective space. The group of automorphism#of is

Aut (PV) 2 GL, (K)/{K -1} = PGL, (K) .

Similarly, if H is a Hilbert space, we writ&®H for its associated projective space. M(H) be
the group of isometries dP?H. Then

PU(H) = U(H)/{x-1},

whereUH is the group of operators which are products of unitary operators together with complex
conjugation [unitary and anti-unitary operators].

8.1. Theorem. Let B(H) be theC*-algebra of bounded operators . Then
Aut (B(H)) = PU(H).

8.2. Theorem. The connected component of the identityiti () is
PUH)=U(H)/{\-1}.

Definition. A projective representation @f on a finite-dimensional space is a homomorphisr of
into PGL,, (K'). So every projective representation@fon ann-dimensional projective space is a
map

t:G— GL, (K)
such that

t(91)t(g2) = c(g1, 92)t(g192)
c:GxG— K\{0}.

By equating(g1g2)t(gs) andt(g1)t(g2g3) we require

6(91, 92)0(91927 93) = 0(917 9293)0(927 93)-

Therefore a projective representation uniquely defines an eleménit(cf, K\ {0}).
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Definition. A projective unitary representation 6f is a homomorphism of/ into PU(H). If Gis
connected then any such representation is a homomorphism?inta? ).

Remark.Let G, be a commutative subgroup 6f Consider the central extension@fby G,
1— Gy — G—G—1.

Clearly we can obtain projective representation§ éfom linear representations 6f, 5, by mapping
g — p(g), with g an arbitrary inverse image af We only require thaf(g,) is a scalar operator for
all go € Go.

8.3. Theorem. Every projective representation 6f is obtained from an extension by some group
G.

Proof. Projective representations correspond to elementd*df7, K\ {0}). as we have already
noted. Letp be as described above, i.e. a linear representation sucj(thatis scalar. A central
extension is then possible, identifyidg with a subgroup of<\ {0}. The classes of such extensions
are as well classified bi? (G, K\ {0}). O

Definition. Let G be a Lie group with Lie algebrg. We can define an algebra cohomology as
follows. Let Z?(g, R) be the set of functions: g x g — R with the properties

1. cis bilinear and skew-symmetric.
2. c([Xy, Xo], X3) + ([ Xa, X3], X7) + ([ X35, X1], X2) = 0.
Let B%(g, R) be the subspace &f(g, R) consisting of functions of the form
(X1, Xo) = (F[X1,Xs]), Feg-
Define a cohomology group
H? (g, R) = Z*(g,R)/B*(g, R).

8.4. Theorem. Letg = g, & g» Whereg; is semisimple ang, is a solvable ideal. TheH? (g, R) is
isomorphic to the subspace Bf (g,, R) generated by € H? (g,, R) satisfying

c([X1,Y], Xs) = (X1, [V, X2]), X1, Xa€@,Y €g5.

8.5. Corollary. Every projective representation of a connected and simply connected semisimple Lie
group is obtained from a linear representation of the group.



Chapter 9

Analysis on Coset Spaces

9.1 Differential Operators

Definition. Let G be a Lie group. LeD(G) denote the set of left-invariant differential operators on
G. Given X € g define a vector fieldl onG by

(Xf)9) = X(foly)
d
= /(g exptX)li=o.
Then(X(f o ,)(htg) = (X f)(g). SOX € D(G).
9.1. Theorem. Let G be a Lie group with Lie algebrg. Then there exists a unique linear bijection
A:Symg — D(G),

such that\(X™) = X™, whereSym g is the symmetric algebra over the vector spac¥ {X;} is a
basis ofg and P € Sym g then

(AP)f)(g) = P(01,-..,0n)f(gexp(tiXi))]i=0-
Proof. This is not too difficult. See [Hel84, p. 281]. O

9.2. Theorem. Supposé&- is connected. LeE (D) be the center oD(G). Letl(g) C Sym g be the
set ofAd (G) invariants. Then

and Z (D) is precisely the set of bi-invariant differential operators@n

Proof. Itis easy to see that D = DX if and only if
Drexth — D

forallt € R. Also A(Ad (g) P) = Ad (g) A(P). So both statements are proven. O
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Definition. Let H be a closed subgroup @f, with Lie algebrah. Let m be any complementary
subspaceg = h @ m. Usem andexp(-) to coordinatize~/H.

DefineG/H to be reductive ifn can be chosen such thatl;(h)m C m, h € H. In particular, if
Adg(H) is compact theid/ H is reductive; ifH is compact then clearlg / H is reductive.

Definition. Define Dy (G) = {D € D(G) : D™ = Dforallh € H}, i.e. the set offf-invariant
operators orts. If fis a function onz/H, definef = f o .

Definition. DefineD(G/H) to be the set of differential operators G H which areG-left-invariant,
Dl = D.

9.3. Theorem. Assume=/ H is reductive. Defing : v — D,,
D.f =uf,

for f a function onG/H. Theny is a homomorphism aby(G) onto D(G/H) with ker (u) =
Dy (G) N D(G)h. So

D(G/H) = Dy (G)/ker ().
Proof. See [Hel84, p. 285]. O

Definition. A homogeneous space is called two-point homogeneous if for any two pairs of points
(p,0), (P, '), with d(p, q) = d(p', ¢'), there exists an isometiywith g(p) = ', g(q) = ¢'-

Remark.It can be shown that a Riemannian manifold is a two-point homogeneous space if and only
if it is isotropic.

9.4. Theorem. Let G/ K be two-point homogeneous. ThBG/H) consists of polynomials in the
Laplace-Beltrami operator.

Proof. By the property of two-point homogeneit§d K acts transitively on the unit sphere in any
tangent space @f/ K. Therefore, the set dfd K invariants irSym m is generated by 2+ - -+ X 2
where{ X;} is an orthonormal basis af. O

9.5. Theorem. LetG/K be a symmetric space witki compact. TheD(G/K) is commutative.

Proof. See [Hel84, p. 293]. O

9.2 Spherical Functions

Definition. Let G be a connected Lie group withi a compact subgroup. Let: G/K — C be a
smooth function withy(7(1)) = 1. Theng is called a spherical function if the following hold.

o ¢l =gforallk € K.
e Do = Apoforall D e D(G/K); \p € C.
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Definition. Recall the definitiony) = ¢ o 7. We say that is spherical or(i if ¢ is spherical on
G/K. If ¢ is spherical orGz then it is K-bi-invariant,

o(kgk') = ¢(g), forallg € G, k, k' € K.

9.6. Theorem. Let¢ : G — C be continuous and not identically zero. Thers spherical if and
only if

/K baky)dk = H(2)B(y).

Proof. See [Hel84, p. 400]. O



Chapter 10

Harmonic Analysis |

10.1 Introduction

Recall our basic goals given a topological grakip
e FindG.
e Find the Plancherel measure G

e Find an analogue of the Weyl character formula, i.e. determine the characters.

These results form the foundation for harmonic analysis on any group

10.2 Classical Fourier Series

Remark. The theory of classical Fourier series deals with functions on the IGru$™ is a compact
abelian group and its irreducible (and thus one-dimensional) unitary representations are precisely the
characters

— —]
Y

X (0) = exp [mm . 9} ez

where we have realizét™ as|0, 1]".

Definition. For f € L?(T™; df), the Fourier transform of is given by

F D) = Fm) = [ a0 7@nald)
Remark. The Fourier transform has the interesting property that it diagonalizes the regular represen-

tation, (r(¢)f)(d) = f(—¢ + ), in the sense that the representatir r o F~! on L2 (Z"; ) is
diagonal in the standard basis it (Z";6).
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Remark.When f is smooth we have the Plancherel formula
F(0) =" F)xa(0)
=> fom

where the convergence is absolute. This is just the inverge of
Remark. The fact thatF is unitary is expressed in the Parseval relation

Tn

fgd 0 =" f(m)g(m).

10.3 Classical Fourier Analysis

Remark. Classical Fourier analysis deals with functionsi®h which is a locally compact abelian
group. The Fourier transform is defined first by a map on Schwarz sp@cs,
S 1
FhHk)= f(k) =
FHE=FE = 5 |

This defines a bounded linear transformation and thus extends(i®”; dz).
The Parseval relation ob? (R"; dx) is

1 m
— gd"x = gd'k.
2 Je /g - fg

When f is smooth the Plancherel formula holds

fl@)= | FR)e*Tak.

]Rn

f(:f)e_”s'f d"x.

~

Remark.If T is a distribution,I” € S'(R™), then its Fourier transform is defined [ﬁ(f) T(f),
[ € S(R™). A particularly interesting case &= ) ._,.. (7 — 7). ThenT = > dezn §5(k — 2mm).
This is equivalent to the Poisson formula

S =Y J@. fes®.

neEL™ qe2nzm

10.4 Locally Compact Abelian Groups

Remark.The classical theory extends to general locally compact abelian groups; hetsuch a
group in the following.

Definition. Recall that the set of charactegsis itself a locally compact abelian group whéhis
ableian. Lety € G. Define the Fourier transform gfe L! (G; dg) by

_ / £(9)x(9) dg



CHAPTER 10. HARMONIC ANALYSIS 1 82

Remark. A small technical effort is required in order to define the Fourier transformh’qit7; dg).
Define a norm

1l = max(fll - 11 |[F]| ) £ € Cot@).

DefineD(G) to be the completion of’, (G) with ||-||,. Convolution and conjugation extendG)
making it a Banach *-algebra, and the Fourier transf@fmxtends to a *-isomorphism @ (G) onto

a subalgebra af'(G) consisting of functions vanishing at infinity; the functions vanishing at infinity
are||-||,-dense in that subalgebra.

—

In sketch we do the following. Define a linear functional B(G), which is the image oD(G)
underF,

A(f) = f(1), feD@).

ThenA\CO(@) is the Haar integral ofi¥ which we can use in the following way,
o) = (N0 = [ GrD0dx = | Froxte)dx

Now || £]1% = (f*of)(1) = A(|f]?), and clearly we hav#f”2 < ||£]l,. Butthe set{f eD(G) : [ el (G)}
is easily seen to be densefr{(G) with the||-||, norm. This shows thz#fHQ = || f|l5- Therefore we

have the following theorem.

10.1. Theorem (Parseval).f — f is a unitary isomorphism of? (G; dg) onto L? <@; dX>, for a

certain Haar measurdy onG.

Definition. Let H be a closed subgroup of an abelian graipDefine the annihilator off, H, to
be the subgroup

H<G
ﬁ:{xeé’:x(h)zl,hefl}.

Then we have?/H = [ and ] = G /1.

Definition. If H is discrete and?/H is compact, therH is called a lattice irG. In that caseH is
also a lattice irG.

10.2. Theorem (Poisson Formula)LetI" be a lattice inGG. Normalize Haar measure so thatG/I") =
1. Suppose thaf € C(G) N L' (G;dg), and f € L} (@;dx>, and that

S Hg+), D f+)

yerl ,vyef*

are uniformly convergent fog, xy varying over compact subsets Gfand G respectively. Then we

have
S =Y 7%

= yer
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10.5 Compact Groups

Remark.The compact case is covered completely by the Peter-Weyl theory. This asserts that the
matrix elements of the irreducible representation§'@fre complete and orthonormal i1} (G; dg).
We have seen already how this occurs, in the general context of topological groups.

Remark. The first really nontrivial example is probab80 (3). Harmonic analysis 080 (3) is
based on application of Peter-Weyl theory and a specific realization of the regular representation.
Foreachh =0, 1,2, ... define a matrix4,, € Mat(2n + 1,2n + 1) by

Y™ (gr) = > (A(9)),, Vi (x), g€S0(3).
e

In other words,A,,(¢g) implements the regular representatior56f (3) on the representation of di-
mensior2/ + 1. As such, the matrix elements df for all I are complete irL? (SO (3) ; dg); the 4,

are a complete set of irreducible unitary representations. [Actually this is more subtle; it apparently
fails for SO (n), n > 4].

Then we define

and
flg) = >+ 0T (f)Alg)

=0

We will encounter more examples later, when considering the group theoretic approach to special
functions.

Definition. Let G' be a compact group. Let € L' (G;dg). Then the Fourier transform of is
defined to be the operator-valued function@mgiven by

flw) = /Gf(g)pn(g‘l)dg-

~

Of coursef (k) is a finite-dimensional operator, so there are no function-analytic complications.
Remark. The Peter-Weyl theorem shows thatfiE L' (G;dg) N L? (G;dg), then

1@ = 3 dim T (7))

10.6 Noncompact Groups

Definition. Let G be a locally compact group. Lgte L' (G;dg). Define the Fourier transform to
be the operator-valued function ¢hgiven by

Fiw) = /G F(9)pelg™)dg.
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Harmonic Analysis Il

11.1 Sampling Theorem on the Circle

Definition. Let f € C ([0,1]) with a Fourier series repesentatip(t) = >~ f,, exp(2mwimt).
We say thatf is band-limited with band limit\/ if f(t) = >, <, fm exp(2mim).

Remark.Band-limited functions on the circle are clearly smooth and periodic, and the finite sum
obviously exists pointwise everywhere.

Remark.Because a band-limited function is specified by a finite number of parameters, one imagines
that it is possible to reconstruct the function from a finite amount of data, such as the values at
some finite set of points. This is true in general, and we can construct many explicit such sampling
schemes, of which we will examine the most common shortly.

11.1. Theorem.Let {f;} be a set of sample values, supposed given at a set of distinct points
{t; € ]0,1]},i=1,...,2M + 1. Then amongst the band-limited functions with band libfithere

exists a unique functiofi(¢) with f(t;) = f;.

Proof. This is an elementary statement. L€t) = exp(27it). Then a band-limited function with
band-limit 1/ is a Laurent polynomial ir, of orderM, f(t) = >_,, <) fm2z™. As such it has a
unique analytic continuation to an annulus containing the unit circle and separated from the origin
and infinity. Such a Laurent polynomial is uniquely specified by its values at any set of distinct
2M + 1 points within the annulus, in particular by tBé/ + 1 values at:(¢;). O

11.2. Theorem. Let f be a band-limited function ojf, 1], with band limitM. Lett, = n/(2M +1).
Then the following equality holds pointwise.

sin((2M + 1)7(t —t,))
f(t) Z f(tn mod1) sin(m(t — t,)) '

Proof. This will be an easy consequence of a more powerful result which we will prove belaw.

2M +1 |n|<M

11.2 Sampling Theorem on the Line

Definition. Let f € L?(R) N L' (R) and letf be the Fourier transform of. We say thatf is
band-limited with band limitV" if f is zero outside of—1V, W].
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11.3. Theorem.Let f € L? (R) be band-limited with band limiti’. Then the following holds,
. n
f) = lim S f (—) S(t —n/2W),
with
sin(27Wt)

S(t) = ——+—

®) 2nWt
where the sum converges absolutely.
Proof. This will be an easy consequence of a more powerful result which we will prove belaw.

Remark.The sampling kernel which appears here is clearly related to the one for sampling on the
interval given above. One can construct the kernel for the interval by summing the kernel for the line
in order to make it periodic, as it must be. This is a sum over equally spaced poles, and the residues
imply that the sum is equal tty sin(27t) (the theorem of Mittag-Lefler applies). The converse arises

by contracting the formula for the circle to the tangent space at zero, a kind of Wigner contraction.

11.3 Sampling as Spectral Analysis on the Dual Space

Remark.Each of the above sampling theorems is a consequence of a more general picture. This
general picture shows that the convergence of sampling theory can be interpreted as convergence of
expansions in the dual or frequency space.

11.4. Lemma. Fix a topological spac€ and a measure spaée Letf : T — Candg € L*(9),
and suppose

f@:AWMK@WW%

whereK (t,w) is an integral kernel, continuous in each variable, and square-integraklefar all ¢.
Let{¢,(w)} be an orthonormal basis fat? (2). DefinesS,,(t) = (K (t,-), ¢u(-)) = [ dw K (t,w)@;(w).
Suppose finally that there exists a et € 7}, such thatK (t,,w) = ¢,(w). Definefy(t) =

> nen [ (tn)Sn(t). Then

f(t) = lim fx(2),
where the convergence is pointwise and absolute.

Proof. Let D, ,,(w) = K(t,w) — ¢n(w) (K(t,-), pn(-)). We have

|ﬂw—mm|slémmwmmAM|

1/2 1/2
< lglly” 1 Denlls

SinceD;, , must converge in the mean to zero fortadind|| ||, is finite by assumption, the left-hand
side converges to zero for all O
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Remark.When(2 is not of finite measure, many “interesting” kerné&lswill not be square-integrable
as specified in the above. Therefore, we must look to subsets having finite measure or which other-
wise have the property that the kernel is square-integrable on them.

Definition. Let 7 and(2 be as in the lemma. L&D be a subset of? such thatk (¢, w) is square-
integrable over. If supp (g) is contained irQ and f(t) = [, du(w) K(t,w)g(w), thenf is said to
be band-limited with band s&.

Remark.The most common case = 7 = R, with Q = [-IW/,W]. In this case we say thgtis
band-limited with band limit}’.

11.5. Theorem.Let7 and (2 be as in the lemma. Let be band-limited with band s&®. Let L
be a self-adjoint operator oh? (supp (g)), and suppos8pec (L) is discrete with all points of finite
multiplicity. Let{¢,} be the normalized eigenfunctions fbr and suppose, (w) = K(t,,w) for
some seft,, € 7}. Then, withfy(¢) defined as above,(t) = limy_., fx () for all ¢.

Proof. {¢,} is clearly an orthonormal basis f@r (supp (¢)). By the band-limiting assumptior’
is square-integrable ov&l. Therefore the lemma applies directly. O

Remark.Now we are in a position to prove the special case sampling theorems discussed above.

11.6. Corollary. Let f be a band-limited function 0, 1], with band limit)/. Lett,, = n/(2M +1).
Then the following equality holds pointwise.

sin((2M + 1)m(t —t,,))
J(t) = 2M 77 2 f(n mod 1) =R

In|<M
Proof. Let 7 be the intervall0, 1] and 2 be Z. Let Q be Zs,.1, identified with the finite set
{-M,—(M —1),...,M — 1, M}, which is the band set for band-limitefl with band limit /1.
Let K (t,m) = exp(2mimt) be the kernel of the Fourier transform @h1]. ThenK is continuous
and square-summable @ for all t. Let L be the left shift operator o@, with the identification
M + 1 = —M. Then the spectrum df is the set{t, =n/(2M + 1) : n € Z}, where each point
has multiplicity one. The normalized eigenfunctions &gém) = exp(2mimt,)/+/(2M + 1), and
on(m) = K(t,,m). Therefore the lemma applies, the sum which occurs is actually finite, and we
need only computé,,(t). We have

Sult) = > exp(2mim(t —t,))
[ml<M
= cos(2Mn(t — t,,)) + cot(n(t — t,)) sin(2Mm(t — t,,))
sin((2M + 1)z (t — t,,))
sin(m(t —t,)) '

U
11.7. Corollary. Let f € L? (R) be band-limited with band limiti’. Then the following holds,

f(t) = lim ng;/) S(t —n/2W),

with
_ sin(27Wt)
o 2rWt
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Proof. Let 7 and(2 beR. Let Q be the interva|-W, W]. Let K (t,w) = exp(2miwt) be the kernel
of the Fourier transform oR. ThenkK is square-integrable ov&. Let L. = —id/dw be the shift on
[—W, W], with the identification/’ = —W. The spectrum ol is the set{t, = n/2W : n € Z}.
The lemma applies, and we compusieas follows.

w
Sn(t —t,) = % /W dw exp(2miw(t — t,))

sin(2rW(t —t,,))
27W (t —tp)

0

Remark.Clearly a host of such sampling theorems present themselves at this point. The following
is a nice application to Hankel transforms, both on the finite and the infinite domain.

Definition. Let f(¢) be in L? ([0, 1]; tdt) The v-Hankel transform off is a function defined on
the positive integers;,, = fo tdt f(t)J,(Jumt), m € {1,2,...}. As a simple consequence of this
definition we have

[e.e]

2J um
I ey / )-

1/+1 jum

11.8. Corollary. Let f(), g, be a Hankel transform pair as in the definition. Suppose thats
zero form > M. Thenf(t) is smooth withf(1) = 0 and

M-—1
= Z f(jy,k’/jl/,]\/[)sk’(t))
k=1
with
2 e Jy(ju,kjl/,m/jl/,]V[>

Jone S o1 Gug) P o1 (o)
Proof. The smoothness and the propeytyl) = 0 are obvious from the representation fft)

as a finite sum over Bessel functions. LEtbe the interval, and) be {1,2,...}. Let Q be
the finite set{1,2,..., M}. We must makeQ into a Hilbert space. This we do by choosing a

weight functionu(m) and takingi? (Q; ). The choice we make ig(m) = f\ I (Gom)| 2 =

Jv,M

S(t) = B Ju(tfvm)-

V2 | J+1(Jum)| 2. This is precisely the set of Gaussian quadrature weights for the orthonormal set

]IM

On(m) = JQW n = 1,2,...,M — 1. This orthonormal set satisfies the condition-
s of theorem, in that it is the restriction of the Hankel transform kernel to the finite set of points
{Jvi/dvaas -y dui—1/dv.aa b, UP tO @ trivial normalization factor. The self-adjoint operator which is
diagonal in this basis is the coordinate operator itself, with eigenvalues, ;, k =1,..., M — 1.

Applying the theorem we get
Su(t) = (Ju(th,), ¢ ())
-1

]u,M |JV+1(]V,n)|

Jl/(t]V m)

— 2 JV (.ju,n.ju,m/ju,M)
1 |JV+1 (ju,m) ‘2 | JV+1 (jl/,n) |2

Iy (thym)-
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Definition. Let f(¢) be in L? (R;tdt). The Hankel transform of is the functiong(w) given by
g(w) = [7tdt J,(wt)f(t). Note that the Hankel transform is its own inverse.

11.9. Corollary. Let f(t), g(w) be a Hankel transform pair. Suppose thabp (¢) is contained in
[0,W]. Then

F(t) = Tm Y f (/W) Sa(t),
with
2 J,(tW)

Sp(t) = .
( ) jg,n — 2w Ju+1 (jl/,n)

Proof. Let 7 and(2 beR. Let Q be the interval0, W]. The measure of2 and thus orQ is wdw.
Let L be the Bessel differential operator with fixedn [0, W] with Dirichlet boundary conditions
g(0) = g(W) = 0. Then the eigenfunctions atg,(w) = J,(t,w) with t,, = j,,/W,n =1,2,....
The normalization integral is known,

w WQ
/ oo T, (n WP = ST ()P
0

Furthermore we have

Ju(a) szJrl (jl/,n)

12 2
Jon — &

1
/ xdz J,(ax)J,(x]yn) =
0

Therefore

fOW wdw J, (wt) J, (Wjyn/W)
1 wdw [T (@jn/ W2
2 (W)
Jon — PW?2 Jui1(Jun)

Sn(t) =

Remark.For a nice discussion of sampling in the general context, see [Kra59].

11.4 Discrete Fourier Transform

Remark. The sampling theorem for the interv@l 1] can be used to define a discrete version of the
Fourier transform for band-limited functions. The idea is that one should be able to express the
Fourier transform of a band-limited function in terms of the sampled values of the function. This is
an easy computation, given the sampling theorem that we have already proven.
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11.10. Theorem.Let f(¢) be a band-limited function o, 1] with band limit)A/. Then we have, for
m=—M,...,M andt,, =n/(2M + 1) mod 1,

f(m) 2M—|—1 Z f(t,) exp(—2mimt,,).
|n|<M

Proof.

f(m) = 2M+1 > fltn / dtexp(—2mimt) > exp(2mik(t — t,))

0

e <M
1
— 2M Z Z f(t,) exp( 2m’ktn)/ dt exp(2mi(m + k)t)
1 [n|<M |k|<M 0
= S F(tn) exp(—2mimt,).
2M+ |n|<M

]

Remark. This discrete representation for the Fourier transform of a band-limited function is called
the discrete Fourier transform. Because it can be implemented directly on a computer, it is very often
used. Oftenitis useful even when the functions of interest are not strictly band-limited; however, one
must then be aware that the discrete transform is now only an approximation to the Fourier transform.
Treating a function which is not band-limited as if it were introduces so-called aliasing errors.

Remark.Perhaps the main reason that the discrete Fourier transform is so important is that there
exists an algorithm for computing it with a number of operations of ofddng M, as opposed

to the naive application of the formula, which would take ordiét operations. One sophisticated
discussion of the fast Fourier transform is given by Auslander and Tolimieri [AT79].

11.11. Theorem.
Proof. O

11.5 Discrete Hankel Transform

11.12. Theorem.Let f(¢) be a function on the unit interval, 1]. Let g,, be the finitev-Hankel
transform off,

g = / tdt J, Gt (2).

. . 2<]V(jl/,m$)
f(t)_ 1 Jz/+1<ju,m>2

m-

Suppose that is band-limited in the sense that, = 0, m > M. Then we have

_ Z ]zxk J ]Vm.]zzk:/]uM)

]VM k=1 jI/M Jy+1<]zx,k>
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Proof. We compute, using the sampling theorem for the finite Hankel transform.

1
gm:/o tdt J,(tjym) (1)

,_n

1 M—

0 k:l

Z G joar) 22 Jemdvic) )

]yM Jqul(]u,m)Q
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Chapter 12

R

12.1 Representations

Remark.By the general results on abelian groups, we know that all irreducible representati®ns of
are one dimensional. The irreducible representations are themselves the characters.

12.1. Lemma. The only continuous solutions of the functional equatfon + y) = f(x)f(y) are
of the formf(z) = expax, a € C.

Proof. First note that any solution to the given functional equation must be infinitely differentiable,
which we prove as follows. Lef(z) be a continuous solution which is not everywhere zero, and
let (x) be any infinitely diﬁerentiable function with f(z)¢(x) = ¢ # 0. We computef (y)c =

y) [ f(@)p(x) = [ flz+y)p(z) = [ f(x)p(x—y); the right-hand side is infinitely differentiable,
and therefore so is the left- hand side. Therefore we can assume that any continuous solution is
infinitely differentiable. So, using the obvious fact thfd0) = 1, we take a limit of the functional
equation to obtainf’(x) = f/(0)f(x). But the solutions to this equation are given by the one-
parameter familyf (z) = exp ax. O

Remark.Given this result, we see that the unitary irreducible representatioRsaoé given by the
characterqy, (z) = exp(ivz) : v € R}, and saR = R.

12.2 Fourier Analysis

Remark.We have previously introduced the classical Fourier transform in the context of harmonic
analysis onR™. From the standpoint of representation theory, the Fourier integral is the explicit
realization of the direct-integral decomposition

L* (R) = /EB XvdE(v).

Remark. The following application of harmonic analysis seems at first out of place, but it is actually
an example of a very general circumstance. See [Fur73].
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12.2. Theorem (Central Limit). Let{X,} be a collection of identical random variables with den-
sity f(x). Without loss, suppose the mean is zero and the standard deviation is one for each. Let
{Y,,} be the collection of random variables definedpy= (X; + - -- + X,,)/+/n. Then

b
Pla<Y,<b)~ (27r)1/2/ dr exp(—2?/2), n — oo.

Proof. Using the assumption about the mean and the standard deviation akgaele have

floy=1
f'(0)=0
f7(0) = —4z2.

Therefore

A

f(s/v/n) ~ 1 —2m%sn,
f(s/v/n)" ~ exp(=27%s?), n — oo.
Recall that the density for,, is given by then-fold convolution of the density foX, /\/n, and so

this asymptotic result gives the density #grin the limit. Precisely, letl,, be the density fol,,, then
for any Schwarz functiog(x) we have

lim [ d,(x)g(x)dx = /exp(—27r232)§](s) ds = (27r)_1/2/exp(—:v2/2)g(93) dz.

n—oo

Then the result follows by the density of Schwarz functions O

Remark. The following discussion gives an example of the trace formula for a compact domain. The
result is classical, but the trace formula approach has a wide generalization.

12.3. Theorem (Poisson Summation)Let f(x) be a Schwarz function dR™. Then
Z fle+a)= Z f(a) exp(2mia - x).
a€Z™ a€zZm™

Proof. Classical Calculate the Fourier expansion of the left hand side,
fla) = /f(x) exp(—2mia - x)dx

— Z /[071]71 f(z +b)exp (—2mia - (x + b))

beZn

= Z /[o,un f(z+b)exp (—2mia - x)

bezn

= / exp (—2mia - x) Z f(z+0b).
0.1

bezm

To complete the theorem, we need to know that the Fourier series converges everywhere. This follows
from standard results on Fourier series, since the function is smooth and the domain is compact.
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Proof. Trace FormulaDefine an integral operator di¥ (R™/Z") by

(Lsg)(x) = (f*g)(x), g€ L*R"/Z").

This is a Hilbert-Schmidt operator defined on a compact domain. Therefore it has a smooth kernel,
given by

K(z,y)= > fla—y—b),
bezn
and its trace is given by

Tr (Ly) = /Rn/zn Ky(x,x)dr = Z f(a).

acZm™

On the other hand, the eigenvalued.gfare precisel;{f(b), be Z”}, with eigenvectorgexp(2mib - z)}.
Therefore

Tr (L) = Y f(b).

bezZn

Equating the two expressions gives the result. O

Remark. The assumption that(z) is a Schwarz function can presumably be weakened. However,
this is apparently not trivial. It is worth noting that there exist examples ef ! (R) for which the
Poisson summation formula does not hold. See [Kat76, p. 130].



Chapter 13
R*

Remark.Let R* be the multiplicative group of positive real numbers. This is an abelian Lie group.
Recall that a Haar measure &1 is given bydz/z. The characters arg,(z) = 2%, t € R. These
results can be obtained most easily by mapfirg R* using the logarithm and using the results for
R.

Definition. Let f(z) be a complex-valued function d@ti. Define the Mellin transform of ats € C
to be

1) = [ rape

Remark.In the case of the real lin&, the set of charactefexp(ikx)} gives a spectral resolution
of the invariant differential operatdrl/dx)?. Similarly for R*, the set of charactersr®}, ¢ € R,
gives a spectral resolution of the invariant operatad /dx ).

Remark.The Mellin transform for real values afis related to the Mellin transform for imaginary
values ofs in the same way that the Laplace transform is related to the Fourier transform.
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Affine (R) = R* x R

Definition. The group of affine transformations of the real line is given by mgpsb) : = —

ar + b; a,b € R,a > 0. This is a nonabelian Lie group. It is an example of a semi-direct product
becaus&* has a nontrivial action oR, which is seen in the multiplication law(a;, b1 )g(az, b2) =
g(ajaz, arby + by).

Remark.We have previously displayed the Haar measure(shfime (R). The measurdur =
dadb/a is right-invariant, and the measuig; = dadb/a* is left-invariant. Affine (R) is not uni-
modular.

Remark. The multiplicative subgrou* of Affine (R) has the representations we have already seen,
with characters;(g(a,0)) = a". Forv € R these are unitary irreducible representations.

14.1. Lemma. Let H = L* (R*,dx/x). Define the following bounded linear maps 6n(R*) and
extend to them té,

p+(9(a,b)) f(x) = exp(—ibx) f(ax),
p—(g(a,b))f(x) = exp(ibx) f (azx).
Thenp, andp_ are unitary representations dfffine (R) on .
Proof. The invariance of the inner-product is a simple computation. Continuity is obvious. []

14.2. Theorem (Gelfand-Naimark). The representations, andp_ are irreducible, and the repre-
sentationst;(g(a,0)) = a*, p,, andp_ together exhaust the unitary irreducible representations of
Affine (R).

Proof. O
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SO (3)

15.1 Spherical Harmonics

Definition. DefineY;,,(0, ¢) = ¢ P/"(cos §). These functions occur as eigenvectors of the Lapla-
cian on the spherg?, with eigenvalue-i(i+1), which can be demonstrated by elementary separation
of variables in spherical coordinates.

15.1. Theorem. The finite-dimensional space spanned by the complex-valued funtigris), |m| < I}
admits a linear representation of the grofip (3),

Yin(9w) = 3 (A(9)),0 Yir(w).

|k|<
With the obvious inner product this representation is unitary.

Proof. This is a straightforward exercise. |

Remark. It is well-known that the spherical harmonics exhaust the irreducible unitary representations
of SO (3). This is proved for instance in Ref. [Vil68]. However, this is not a general result. One
can define representationsS#b () on higher-dimensional harmonics with a formula like that of the
above theorem. It turns out that the set of harmonics defined this way do not exhaust the irreducible
representations &fO (n) if n > 3. This is also proved in Ref. [Vil68]. In fact, for > 3 the spaces

of harmonics so defined exhaust only the set of representations which have a vector which is fixed
under ar5O (n — 1) subgroup.

15.2. Theorem (Addition Formula). Letw;,w, € S?. Then
. 20+1
Z Km(wl)yzm(u&) — e Pl(wl . WQ).

m<l

Proof. Each side of the equation is invariant upon replacing simultaneoyshy gw; andw,; +—

gwq, Whereg € SO (3) acts on the points as usual. (The left-hand side is invariant because the sum
onm makes it a scalar in the representation space.) So the two sides must be proportional since the
scalar representation of the group is one-dimensional. To determine the constant of proportionality,
setw; = w, and integrate both sides ovsft. O
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15.3. Theorem (Funk-Hecke).Let f : [-1,1] — C be a continuous function. Then
1
f(W - w)Yi (W) do' = 27rYlm(w)/ FO)P(t)dt
52 -1
Proof. Using the addition formula it is easy to show that

47
Y,
2k+1lm<

/ Yim(M)Pk(wl 'wz) dw, = w2)5lk-
S2

Sincef is continuous on the closed interval, it can be uniformly approximated by Legendre polyno-
mials P,(t). Expandf in this way, and the result follows immediately. O



Chapter 16

SU (2)

16.1 Holomorphic Representations

Let E'y 1 denote the set of homogeneous polynomials of dejyreethe variableg, z;. As we note
elsewhere, this space admits a reprsentatidtigf C). Therefore it also admits a representation of
SU (2). By the general theory, sinc&U (2) is compact, we know that this representation can be
unitarized.

16.2 Characters and Dimensions of Representations

We can use the Weyl character formula and the Weyl dimension formula to obtain information about
the representations 6fU (2). In fact, since these are Lie algebraic results, they apply to any group
of type A, in the Dynkin classification.

Recall that dominant integral weights correspond to the finite-dimensional irredgerbtedules.
These are the representation spaces in which we are interested\, ,Rbiere is one fundamental
weight, sayw;, and the dominant integral weights aeww;}, m € Z, m > 0. Consider theg-
moduleL(mw; + p). The characters of the maximal toruig1) are exponentials, the Weyl group

is generated by one reflection, and the character of the associated representation is thus given by

A Gl
Ay G p

The dimension of the representatiofmw, + p,) is

dim L(mw, + p) =m + 1.
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Chapter 17

SU (3)

17.1 Dimensions of Representations

Pick a dominant integral weight = m,w; + mow,. The positive roots ofl; can be writtenk?, =
{a1, ag, a1 + as}, anday, ay have the same length. Using the explicit form of the Weyl dimension
formula we have

(m1 + 1)(7712 + 1)(m1 + mo + 2)

dim LA+ py) = 5 :

The dimensions are thyg, 3,6, 8,10, 15,24,27, .. .}.
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SLy (C)

18.1 Introduction

Remark. It is worth pointing out tha8L, (C) is the double cover of the proper orthochronous Lorentz
group.

18.2 Finite-Dimensional Representations

Recall that a functiorp(z) is called homogeneous of degredf p(\z) = A\"p(z) for all A\. Let
En.1 denote the set of homogeneous polynomials of de@faa the variables:;, z,. Note that
dim Eny1 = N + 1, explaining the notation. For such a polynomial, we can write

N

p(z1, 22) = Z crab R,
k=0

Let s be an element BL, (C)

which we take to act on the two complex-dimensional space of the variables This defines an
action on the spacEy; by composition,

(pn(5)p) (21, 22) = p(s™" (21, 22) = p(dz1 — c29, —bz1 + azy).
Clearlypy(st) = pn(s)pn(t) for s, t € SLy (C).

18.1. Theorem. The set of irreducible finite-dimensional representationsiof(C) is exhausted by
spaces of polynomials as given above.

18.3 Gelfand Method

Remark.A systematic construction of the representationsSios (C), and other groups, was ob-
tained by Gelfand and collaborators [GGV66]. The following discussion gives a few of the basic
ingredients in this construction.
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Definition. Supposes, x» are two complex numbers such that— «, € Z. Write x = (ky1, k2).
For each sucly define the vector spade, to be the space of functiors: C/{0} — C with the
properties

e ¢(2,%) € C= (C/{0}),

o izl =l 771y € O (C/{0}).

TopologizeD, by uniform convergence, together with all derivatives, on compact subsets{6#,
making D, a locally convex topological vector space.

Definition. Define an action ofL, (C) on D, by

e €}

18.2. Lemma. The above defines a representatiorsbf (C) on D, as a locally convex topological
vector space, i.e. is continuous with the given topologies.

Remark. It is sometimes useful to consider another realizatio®pfas a space of functions of the
sphergw; |>4-|ws|? = 1, (w1, ws) € C2, given by the identificationf (w1, ws) = wi™ Wi d(w, /wy).

Remark.Whenk; andx, are both non-negative integers, has an invariant subspace, the subspace

of polynomialsp(z, z) of order at mosk; in z andks, in Z. This is easy to see from the definition

of the action of the representation. This special case is related to the unitary complementary series,
whereas the generic case gives the unitary principal series. The following gallery of invariant bilinear
functionals illustrates these different cases.

18.3. Theorem. Let D,, and D, denote representation spaces as above, wrifing (x1, k2). Then
an invariant bilinear functional : D, x D, — C exists in the following cases.

1. ¢ = x, k1 andx, not non-negative integers3(¢, ¢) = —1 [ dz1dz1dzodzs (21 —22) (21—
ZQ)*HQ*lqs@ZJ’

2. C= i =012, B(6,Y) = § f ded= (99762, )) (=),

3. ¢=—x: B(o.v) = § [ dzdze(2,2)v(2, %),

4. CI (/fl,_HQ), K1 = 1,2,.. ((b 1/} =3 dedZ 8’“(?(2 Z)) YZJ(Z,E>,

5. (= (—K1,Ra), ko =1,2,...0 B(¢,0) = fdzdz ( qﬁ(z’z)) Y(z,%).
Remark. The first two cases are related by the following generalized function identity:

(21 — )" 1(z, —z) 72!

im — §krk2)(z1—2)
K1,k2—k1,koEZ F(—Hl/2 — H2/2 + |/€1 — K,Q‘/Q)
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Remark. Invariant Hermitian functionals o, can be constructed from invariant bilinear function-
als in the obvious mannef(¢, ) = B(¢, ), whenB is invariant undep, ® px.

18.4. Theorem. (p,, D,,) admits a positive definite invariant Hermitian functional if and only if one
of the following holds:

® K1 = —Rg = %(k? —f—ZU),k € 7. h(¢, @b) = %fd2d2¢(217§1)7¢)(22,22),

e =R =re (=11, # 00 h(,9) = —qrimy [ dadndndzla -z (@, 7)Y (2, 7).

Remark.Completing the first case to a Hilbert space gives the unitary principal series. Completing
the second case to a Hilbert space gives the unitary complementary series.

18.4 Unitary Principal Series

Remark.The above construction leads to the principal and complementary series. Because of the
importance of the unitary principal series, we explicitly state the existence and uniqueness results.
The following form of theSL, (C) action is equivalent to that given above, in the principal series
case.

Definition. For f(z) € L*(C), define the following action o,

kiv (@ D L o [ —bz+d -k az — ¢
s <c d>f<z>_‘ bz +d| (|—bz+dy> M\ Thvd)

This defines a unitary representatiorSaf, (C) on L? (C), for anyk € Z andv € R.

18.5. Theorem. P*™ is an irreducible unitary representation 8f., (C). Moreover,P* is unitar-
ily equivalent tgp—+—,

Proof. See [Kna86, p. 33]. O

18.6. Theorem. The above representations exhaust the unitary principal seriesifo(C).

18.5 Plancherel Inversion Formula

18.7. Theorem. Let f be a smooth function of compact support ®in, (C). Then we have the
Plancherel inversion formula,

f(1) = Z /_OO dvTr (PH(f)) (K +v*),

k=—0oc0

which implicitly defines the Plancherel measure on the spgageR.
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SLy (R)

19.1 Introduction

19.1. Theorem. Every finite-dimensional unitary representatiortaf, (R) is trivial.

19.2 Gelfand Method

Remark.Again we consider the method of construction discussed by Gelfand and collaborators
[GGV6E].

Definition. Lets € C ande = 0, 1, and writex = (s, ¢). For each sucly define the vector space
D, of functions¢ : R/{0} — C with the properties

o ¢(r) € = (R/{0}),

o |z[*"'sgn (x)p(—1/x) € C> (R/{0}).

TopologizeD, by uniform convergence, together with all derivatives, on compact subsgis 6%,
making D, a locally convex topological vector space.

19.2. Lemma. Let¢ € D,. Then the behaviour af(z) for |z| — oo is ¢(x) = O (|z|*~1).

Definition. Define an action ofL, (R) on D, by

a b s ar —c
o (8 0) olo) =1 = o dp s (oo ajo (225,
19.3. Lemma. The above defines a representatiorsbf (R) on D, as a locally convex topological
vector space, i.e. is continuous with the given topologies.

Remark.If x is such thap, ¢ = (—bx+d)*~'¢ (%) then the representatior is called analytic.
Remark.It is sometimes useful to consider another realizatioofas a space of functions on the

circle, given by the identificatiori(6) = | sin 6]*~sgn,_(sin §)p(cot 6).
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19.4. Theorem. (p,, D,,) admits a positive definite invariant Hermitian functional if and only if one
of the following holds:

e s=-5=ir,r €R,r #£0: h(¢,v) = [ ¢(z)¢(z)dx,

o [s|<1,s#0,e=0: h(¢,9) = o [ |v1 — 22| > Ld(21)¢(22)dw1d>, Wheres = —1 when
s > 0 ando = 1 otherwise.

Remark.The above theorem shows the existence of the principal and complementary unitary se-
ries. However, in the case 6L, (R) further unitary representations exist. These are based on the
existence of proper invariant subspacegxffor certain values of.

Definition. Lets = 0,1,.... Define the operatord ., A_ as follows, wheny(z) is sufficiently
smooth.

5 1 0o ¢(s) Ndax!

Apolw) = o) = = [ L

- . / )
2mi J_oo @' — 2 — 10

< ) (2 da!
A_(e) = ¢9(z) = = /_ ¢ (a')da’

Comi ) ' — x40

19.5. Lemma. Lets =0,1,...andA,, A_ be as above. Ldt, -) be the standard.? inner-product.
Then the following define independent invariant Hermitian functionals (possibly degenerdbg) on

(¢7 ¢)+ =i’ (A+¢7 W )
(0:9) =7 (A-0,9).

19.6. Lemma. Let p,, D, be an analytic representation, so= 0,1, ... ande is adjusted accord-
ingly. LetD; C D, be the nullspace fo(-,-), and D} C D, be the nullspace fof-,-)_. Let
E, C D, be the subspace of polynomials of order at most1. Then

e DI andD; are proper invariant subspaces 6f,

e DfND; =E;,

e D,/E,=D}/E,® D /E,,

e Theinvariant hermitian functionals given above are nondegenerate and positive-definite on the

respective spaces, sothat = A, (D} /E,) = D} /E;andF~ = A_(D; /E,) = D; /E..

Remark.The space$™ andF'~ have equivalent representations as spaces of functions holomorphic
in the upper half-plane and lower half-plane repsectively.



CHAPTER 19. SL, (R) 106

19.3 Unitary Principal Series

19.7. Theorem.For f(x) € L? (R), define the following actions ofy

o (¢ )=t o ()

1 s =+,
o(s) = {sgn(—bx +d) s=-—.

These define unitary representationssdf, (R) on L? (R), for anyv € R.

19.8. Theorem. The above representations exhaust the unitary principal seriesIfo(R).

19.4 Unitary Discrete Series

Definition. Let D;", n > 2, be the Hilbert space of holomorphic functions on the upper half-plane,

with the norm
1917 =[] 1Ry 2duy
y>0

19.9. Theorem. For f(z) € D;!, define the following actions ofy

— (CCL Z) f(z) = o(£) o (=bx + d) " f ( i ) :

—bxr +d

whereo (+) is the identity map and(—) is complex conjugation. These define unitary representa-
tions of SL, (R) on D, for anyn > 2.

Proof. See [Kna86, p. 35]. O

19.10. Theorem.The above representations exhaust the unitary discrete seri€$.5qiR).

19.5 Plancherel Inversion Formula

19.11. Theorem.Let f be a smooth function of compact support$in, (R). Then we have the
Plancherel inversion formula,

[e.e]

f(1) :/ dvTr (P"(f)) vtanh(mv/2)

—00

+ /_oo dvTr (P"i”(f)) v coth(mv/2)

+> Ak = D)Te (DTF(f) + D(S)) -

k=2

which implicitly defines the Plancherel measure on the sfgageR U Z ™.
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19.6 Curious Topology for Lattice Spaces

Consider lattices ifR?; recall that such lattices are by definition subgroupR ofsomorphic toZ x Z
generated by two linearly independent basis vectors. First noté&ihatR)/GL, (Z) is equivalent

to the space of lattices iR?, and similarlySL, (R)/SL; (Z) is equivalent to the space of lattices in

R? satisfying the condition that each unit cell has unit area. The topology of these spaces is known.

19.12. Theorem.The spaces of lattices in the plane have the following topologies.

1. SL, (R)/SLy (Z) is homeomorphic to the complement of a trefoil kndkin

2. GL; (R)/GL, (Z) is homeomorphic to the space of unordered triples of poiniiwith fixed
center of mass.

Proof. See [Mil71, p. 84]. O



Chapter 20

Heisenberg Group

Definition. Let IV be the group o8 x 3 upper-triangular matrices with real entries and with diagonal
entries all equal to 1,

1
N = 0
0

S =

C

bl :abceR

1

Let Z be the normal subgroup @f consisting of matrices of the form

1
7 = 0 tn e’
0

O = O
— o 3

Define the Heisenberg group to be the gréufy.
20.1. Theorem. The Heisenberg groufl is not a matrix group.

Proof. Follows [Seg95]. Lef” be the circle subgroup df given by matrices of the form

10 ¢
T=<¢9g=101 0] :t€R
0 01

Suppose that we have a representation of H on some finite-dimensional vector spaceDecom-

pose this representation under the actioff’'pinto irreducible subrepresentations V,,. EachV/, is

an invariant subspace under the actiorHgfsinceT is in the center off. Explicitly, g, acts onV,

by multiplication by a phase 27", But eachy; can be written in the formg; = wvu=tv=! for some

u,v € H; thereforep(g,) must act as multiplication by 1, since it has determinant 1. This means that
only n = 0 can appear in the decompositionlof Thereforel” acts trivially onV'. But thenp cannot

be injective. Therefore no finite-dimensional” can provide a faithful representation. OJ

Remark.Roughly speaking, there is a circle group insidavhich is invisible from the standpoint
of finite-dimensional representations.

Remark. H is a central extension @2 by the circle group,
0—-T—H—R?>-0.
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Write the elements off in the formu exp(€) with u € T and¢ € R2. Let S(&, i) be the skew form
&1my — &ny onR2. Then the group law is

uexp(§) vexp(n) = wvexp(iS(£,n)) exp(§ +1n).

20.2. Theorem. The unique faithful representation &f is the standard one of quantum mechanics,
on the spacé.? (R), generated by the one-parameter groups,

€WP, esz’ 627rzt7

where

d
Proof. This is the Stone von-Neumann theorem. It is not difficult to prove. See my noté§ on
algebras. 0

Remark.Pick a complex structure oR? compatible with the skew forn$ defined above. Thus
identify R? with C. If we define

1 , + 1
a_\/i(P+ZQ)7a _\/5
then, on a common domain fét and( we have[aT, a] = 1. It can be seen easily that annihilates
the unique vectof2 = exp(—3«?) and that the sefa"Q2, n > 0} provides an orthonormal basis for
H = L? (R). Considering scalar multiples of these basis elements, we se& thas a dense sub-
space isomorphic to the symmetric algeBgan (C). Thinking of H as the completion dfym (C),
we call it the oscillator representation.

(P —1iQ),

Remark. The three self-adjoint operators

1 ) 1
{§P2>§<PQ+QP>7§Q2}7

share the common dense domain identified Wittm (C) above. On this domain they satisfy the
commutation relations ofl; (R). The one-parameter unitary groups associated to these operators
generate a group which is a double cove$bf (R), which is called the metaplectic grotyppl, (R).

Remark.As pointed out by Segal [Seg95, p. 102], this seems related to the following situation.
Consider the space of spherically symmetric function®R8nand consider the operators on such
functions,

1 3 1,
{e,h, f} = {EA,T’E —i—n/2, 57" } .
These satisfy the relations of (R),

[h,e] = —2¢, [h,fl=2f, e, f]=h.

But these representations of the Lie algedirdR) on spaces of spherically symmetric functions do
not correspond to any representatiorsbf, (R), and they have no apparent geometric interpretation.
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Remark.Define the operatod = a'a + 1/2 = (P? + @Q?). This self-adjoint operator generates
the circle group irSL, (R). In quantum mechanics e is called the number operator, ards the
Hamiltonian of the harmonic oscillator. See [GS93, p. 75].

Remark.It is worth thinking about the physical connection here, because the appearance of the
harmonic oscillator needs to be understood. We began with kinematic information, in the form
of the quantum algebra of observables generated ffoand (). The associated group contains a
circle group which is invisible to finite-dimensional representations, but which controls the phase
information in the (necessarily infinite-dimensional) quantum Hilbert space. All this information
is purely kinematical, in the sense that it applies equally well to any quantum mechanical system.
Suppose now that weefinethe time-evolution of the system to be the automorphism generated by
the action of this circle group; then we have the system which we call the harmonic oscillator. The
harmonic oscillator is special precisely because it is the system with dynamics defined in terms of
this kinematic information, and this is precisely why it is exactly soluble; the harmonic oscillator is
purely representation theoretic.

Remark.One might ask about other exactly soluble quantum mechanical systems, specifically the
hydrogen atom. Can the exact solution of the hydrogen atom be understood group-theoretically? It
turns out that it can, and inde&d., (R) appears again.

Definition. Define the Schroedinger representation of the Heisenberg group by

p(p; q,t) = exp(2mit) exp (2mi(¢P + pQ)),
= p(p, q) exp(2mit),

acting on functions iri.? (R).

Definition. Define the Wigner transform as the mép L? (R) ® L* (R) — L* (R?)

V(f.9)p,q) = /dy exp(2mipy) f (y + %q) g (y - %q)-

Definition. Let ¢, = v/2exp(—mz?). Define the Bargmann transform to be the linear niap
L? (R) — L*(C — {0}; exp(—|2|?)dzdZ),

(B)(2) = exp (S|212) V(£ 0)
- /da: f(x)V2exp (27mz — 7z’ — g|2|2> :

The integral kernel is called the Bargmann kernel. The spgace L? <<C —0; e‘”|z|2dzd2> given
by

F = {f(z) : f(2) entire/f(z)e‘”z'dedz < oo},
is called the Fock space. The composition of the Bargmann map and the Schroedinger representa-

tion gives a representation of the Heisenberg groupratalled the Bargmann representation; the
Bargmann map is a unitary equivalence. See [Fol87].



CHAPTER 20. HEISENBERG GROUP 111

20.3. Theorem (Groenewald).Let P, be the space of real polynomials of degree less than or equal
to £ onR?". Then there does not exist a linear mAp P, — B(S(R")) with the properties

1. R(&) = Dy,
2. R(l’]) = Xj,
3. R({A, BY) = 2ri [R(A), R(B)] forall A, B € P;.

Proof. This is a simple calculation. For such amap we h&y€ ) = s R({¢%,2*}) = 24[D?, X?].
Also R(&%x%) = 3 R({&x, &2x}) = Z[D?X + XD? XD + DX?]. But these are contradictory, as
can be seen by applying each operator to the fungtian = 1. O

Remark. This theorem shows that quantization is not a simple functorial operation on the Poisson

structure of classical mechanics. The algebra of local flows, generated by such polynomial functions
as appear in the theorem, cannot simply be transferred to an operator algebra in the quantum theory.
However, it could be argued that this is too much to ask. Perhaps one should not consider all the

local one-parameter flows, but only those which are actually global flows. In fact this case is also
impossible.

20.4. Theorem (van Hove).The conclusions of the Groenewald theorem remain true as well if poly-
nomials are replaced everywhere by smooth functions generating global one-parameter flows.

Proof. See [Got80] and [Fol87, p. 197] for discussion. O



Chapter 21

Integrating Class Functions

Segal gives an exposition of the nice result for calculating the integral of a class function over the
group U (n) [Seg95, p. 86]. Recall that a class function is a functfoan a groupG satisfying
f(hgh™) = f(g) forall h,g € G.

21.1. Theorem.Let f : U (n) — C be a class function. Then we have

1 2T 27 . X . .
fzi/ / f (diag(e®, ..., e e —e®i12dp, ... db,.

i<j

Proof. Let T" be the maximal torus aff = U (n), consisting of digaonal matrices. For any function
fonG, we have

1

[r=a [ st i@ dedir)
G n. Jrxag/T

whereJ(t) is the Jacobian of the map x G/T — G given by(t, gT') — gtg~'. Whenf is a class

function this gives

Lf=K1Aj®ﬂWm

where K~! = vol(G/T)/n!. Now, J(t) = det(Ad(t7') — 1), whereAd (-) is the adjoint ac-
tion ontt. The eigenvalues ofd (¢t~') are of the formei®*—%)  with eigenvectors given by the
matricesE;; which have all entries vanishing except tfyek) entry which is equal to unity. So
J(t) = Tlu(@®%) —1) = [, e — e[*. Finally, we determine the constahf —

Jp J(t)dt. Note thatJ(t) is equal to the square of the Vandermonde determinant, which is given
by A(t) = Y deimbi... eimafn where the sum runs over iy, ..., m,) equal to the permuta-
tions of (0,...,n — 1). There argn!)? terms in the square, and they can be integrated each in turn,
giving K = (2m)"nl. O

Remark. Almost the same calculation gives a similar result for any compact Lie growgth max-

imal torusT'. The Jacobian in this case is equal£0"|?, whereA* is the Weyl denominator (the
denominator of the Weyl character formula). Notice that the Vandermonde determinant is the Weyl
denominator for the group (n).
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